1887

Abstract

A proline-rich region (PRR) within the rubella virus (RUBV) P150 replicase protein that contains three SH3 domain-binding motifs (PxxPxR) was investigated for its ability to bind cell proteins. Pull-down experiments using a glutathione -transferase–PRR fusion revealed PxxPxR motif-specific binding with human p32 protein (gC1qR), which could be mediated by either of the first two motifs. This finding was of interest because p32 protein also binds to the RUBV capsid protein. Binding of p32 to P150 was confirmed and was abolished by mutation of the first two motifs. When mutations in the first two motifs were introduced into a RUBV cDNA infectious clone, virus replication was significantly impaired. However, virus RNA synthesis was found to be unaffected, and subsequent immunofluorescence analysis of RUBV-infected cells revealed co-localization of p32 and P150 but little overlap of p32 with RNA replication complexes, indicating that p32 does not participate directly in virus RNA synthesis. Thus, the role of p32 in RUBV replication remains unresolved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038901-0
2012-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/807.html?itemId=/content/journal/jgv/10.1099/vir.0.038901-0&mimeType=html&fmt=ahah

References

  1. Aiken C. , Trono D. . ( 1995; ). Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. . J Virol 69:, 5048–5056.[PubMed]
    [Google Scholar]
  2. Bar-Sagi D. , Rotin D. , Batzer A. , Mandiyan V. , Schlessinger J. . ( 1993; ). SH3 domains direct cellular localization of signaling molecules. . Cell 74:, 83–91. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bardeletti G. , Gautheron D. C. . ( 1976; ). Phospholipid and cholesterol composition of rubella virus and its host cell BHK 21 grown in suspension cultures. . Arch Virol 52:, 19–27. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beatch M. D. , Hobman T. C. . ( 2000; ). Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. . J Virol 74:, 5569–5576. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beatch M. D. , Everitt J. C. , Law L. J. , Hobman T. C. . ( 2005; ). Interactions between rubella virus capsid and host protein p32 are important for virus replication. . J Virol 79:, 10807–10820. [CrossRef] [PubMed]
    [Google Scholar]
  6. Choi Y. , Kwon Y.-C. , Kim S.-I. , Park J.-M. , Lee K.-H. , Ahn B.-Y. . ( 2008; ). A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. . Virology 381:, 178–183. [CrossRef] [PubMed]
    [Google Scholar]
  7. Claus C. , Chey S. , Heinrich S. , Reins M. , Richardt B. , Pinkert S. , Fechner H. , Gaunitz F. , Schäfer I. . & other authors ( 2011; ). Involvement of p32 and microtubules in alteration of mitochondrial functions by rubella virus. . J Virol 85:, 3881–3892. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ehrhardt C. , Wolff T. , Pleschka S. , Planz O. , Beermann W. , Bode J. G. , Schmolke M. , Ludwig S. . ( 2007; ). Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. . J Virol 81:, 3058–3067. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fogal V. , Richardson A. D. , Karmali P. P. , Scheffler I. E. , Smith J. W. , Ruoslahti E. . ( 2010; ). Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. . Mol Cell Biol 30:, 1303–1318. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fontana J. , Tzeng W.-P. , Calderita G. , Fraile-Ramos A. , Frey T. K. , Risco C. . ( 2007; ). Novel replication complex architecture in rubella replicon-transfected cells. . Cell Microbiol 9:, 875–890. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fontana J. , López-Iglesias C. , Tzeng W.-P. , Frey T. K. , Fernández J. J. , Risco C. . ( 2010; ). Three-dimensional structure of rubella virus factories. . Virology 405:, 579–591. [CrossRef] [PubMed]
    [Google Scholar]
  12. Frey T. K. . ( 1994; ). Molecular biology of rubella virus. . Adv Virus Res 44:, 69–160. [CrossRef] [PubMed]
    [Google Scholar]
  13. Galani K. , Nissan T. A. , Petfalski E. , Tollervey D. , Hurt E. . ( 2004; ). Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. . J Biol Chem 279:, 55411–55418. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ghebrehiwet B. , Lim B. L. , Peerschke E. I. , Willis A. C. , Reid K. B. . ( 1994; ). Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular “heads” of C1q. . J Exp Med 179:, 1809–1821. [CrossRef] [PubMed]
    [Google Scholar]
  15. Grandi P. , Dang T. , Pané N. , Shevchenko A. , Mann M. , Forbes D. , Hurt E. . ( 1997; ). Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. . Mol Biol Cell 8:, 2017–2038.[PubMed] [CrossRef]
    [Google Scholar]
  16. Guérin B. , Bukusoglu C. , Rakotomanana F. , Wohlrab H. . ( 1990; ). Mitochondrial phosphate transport. N-Ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein. . J Biol Chem 265:, 19736–19741.[PubMed]
    [Google Scholar]
  17. Gustin K. E. . ( 2003; ). Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. . Virus Res 95:, 35–44. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hemphill M. L. , Forng R. Y. , Abernathy E. S. , Frey T. K. . ( 1988; ). Time course of virus-specific macromolecular synthesis during rubella virus infection in Vero cells. . Virology 162:, 65–75. [CrossRef] [PubMed]
    [Google Scholar]
  19. Herwald H. , Dedio J. , Kellner R. , Loos M. , Müller-Esterl W. . ( 1996; ). Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. . J Biol Chem 271:, 13040–13047. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ilkow C. S. , Weckbecker D. , Cho W. J. , Meier S. , Beatch M. D. , Goping I. S. , Herrmann J. M. , Hobman T. C. . ( 2010; ). The rubella virus capsid protein inhibits mitochondrial import. . J Virol 84:, 119–130. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ilkow C. S. , Goping I. S. , Hobman T. C. . ( 2011; ). The rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. . PLoS Pathog 7:, e1001291. [CrossRef] [PubMed]
    [Google Scholar]
  22. Joseph K. , Ghebrehiwet B. , Peerschke E. I. , Reid K. B. , Kaplan A. P. . ( 1996; ). Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). . Proc Natl Acad Sci U S A 93:, 8552–8557. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kay B. K. , Williamson M. P. , Sudol M. . ( 2000; ). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. . FASEB J 14:, 231–241.[PubMed]
    [Google Scholar]
  24. Koch C. A. , Anderson D. , Moran M. F. , Ellis C. , Pawson T. . ( 1991; ). SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. . Science 252:, 668–674. [CrossRef] [PubMed]
    [Google Scholar]
  25. Koonin E. V. , Gorbalenya A. E. , Purdy M. A. , Rozanov M. N. , Reyes G. R. , Bradley D. W. . ( 1992; ). Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. . Proc Natl Acad Sci U S A 89:, 8259–8263. [CrossRef] [PubMed]
    [Google Scholar]
  26. Krainer A. R. , Mayeda A. , Kozak D. , Binns G. . ( 1991; ). Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. . Cell 66:, 383–394. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lee J. Y. , Bowden D. S. , Marshall J. A. . ( 1996; ). Membrane junctions associated with rubella virus infected cells. . J Submicrosc Cytol Pathol 28:, 101–108.[PubMed]
    [Google Scholar]
  28. Linnemann T. , Zheng Y. H. , Mandic R. , Peterlin B. M. . ( 2002; ). Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. . Virology 294:, 246–255. [CrossRef] [PubMed]
    [Google Scholar]
  29. Liu Z. , Yang D. , Qiu Z. , Lim K. T. , Chong P. , Gillam S. . ( 1996; ). Identification of domains in rubella virus genomic RNA and capsid protein necessary for specific interaction. . J Virol 70:, 2184–2190.[PubMed]
    [Google Scholar]
  30. Luo Y. , Yu H. , Peterlin B. M. . ( 1994; ). Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. . J Virol 68:, 3850–3856.[PubMed]
    [Google Scholar]
  31. Matthews J. D. , Frey T. K. . ( 2012; ). Analysis of subcellular G3BP redistribution during rubella virus infection. . J Gen Virol 93:, 267–274.[PubMed] [CrossRef]
    [Google Scholar]
  32. Matthews D. A. , Russell W. C. . ( 1998a; ). Adenovirus core protein V interacts with p32 – a protein which is associated with both the mitochondria and the nucleus. . J Gen Virol 79:, 1677–1685.[PubMed]
    [Google Scholar]
  33. Matthews D. A. , Russell W. C. . ( 1998b; ). Adenovirus core protein V is delivered by the invading virus to the nucleus of the infected cell and later in infection is associated with nucleoli. . J Gen Virol 79:, 1671–1675.[PubMed]
    [Google Scholar]
  34. Matthews J. D. , Tzeng W.-P. , Frey T. K. . ( 2009; ). Determinants of subcellular localization of the rubella virus nonstructural replicase proteins. . Virology 390:, 315–323. [CrossRef] [PubMed]
    [Google Scholar]
  35. Matthews J. D. , Tzeng W.-P. , Frey T. K. . ( 2010; ). Analysis of the function of cytoplasmic fibers formed by the rubella virus nonstructural replicase proteins. . Virology 406:, 212–227. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mohan K. V. , Ghebrehiwet B. , Atreya C. D. . ( 2002; ). The N-terminal conserved domain of rubella virus capsid interacts with the C-terminal region of cellular p32 and overexpression of p32 enhances the viral infectivity. . Virus Res 85:, 151–161. [CrossRef] [PubMed]
    [Google Scholar]
  37. Muta T. , Kang D. , Kitajima S. , Fujiwara T. , Hamasaki N. . ( 1997; ). p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. . J Biol Chem 272:, 24363–24370. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nguyen J. T. , Turck C. W. , Cohen F. E. , Zuckermann R. N. , Lim W. A. . ( 1998; ). Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. . Science 282:, 2088–2092. [CrossRef] [PubMed]
    [Google Scholar]
  39. Nguyen J. T. , Porter M. , Amoui M. , Miller W. T. , Zuckermann R. N. , Lim W. A. . ( 2000; ). Improving SH3 domain ligand selectivity using a non-natural scaffold. . Chem Biol 7:, 463–473. [CrossRef] [PubMed]
    [Google Scholar]
  40. Phelps A. , Schobert C. T. , Wohlrab H. . ( 1991; ). Cloning and characterization of the mitochondrial phosphate transport protein gene from the yeast Saccharomyces cerevisiae . . Biochemistry 30:, 248–252. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pugachev K. V. , Abernathy E. S. , Frey T. K. . ( 1997; ). Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. . J Virol 71:, 562–568.[PubMed]
    [Google Scholar]
  42. Reichert M. , Winnicka A. , Willems L. , Kettmann R. , Cantor G. H. . ( 2001; ). Role of the proline-rich motif of bovine leukemia virus transmembrane protein gp30 in viral load and pathogenicity in sheep. . J Virol 75:, 8082–8089. [CrossRef] [PubMed]
    [Google Scholar]
  43. Saksela K. , Cheng G. , Baltimore D. . ( 1995; ). Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. . EMBO J 14:, 484–491.[PubMed]
    [Google Scholar]
  44. Sattlegger E. , Hinnebusch A. G. . ( 2000; ). Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. . EMBO J 19:, 6622–6633. [CrossRef] [PubMed]
    [Google Scholar]
  45. Tzeng W.-P. , Frey T. K. . ( 2002; ). Mapping the rubella virus subgenomic promoter. . J Virol 76:, 3189–3201. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tzeng W.-P. , Frey T. K. . ( 2003; ). Complementation of a deletion in the rubella virus p150 nonstructural protein by the viral capsid protein. . J Virol 77:, 9502–9510. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tzeng W.-P. , Frey T. K. . ( 2009; ). Functional replacement of a domain in the rubella virus p150 replicase protein by the virus capsid protein. . J Virol 83:, 3549–3555. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tzeng W.-P. , Chen M.-H. , Derdeyn C. A. , Frey T. K. . ( 2001; ). Rubella virus DI RNAs and replicons: requirement for nonstructural proteins acting in cis for amplification by helper virus. . Virology 289:, 63–73. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tzeng W.-P. , Matthews J. D. , Frey T. K. . ( 2006; ). Analysis of rubella virus capsid protein-mediated enhancement of replicon replication and mutant rescue. . J Virol 80:, 3966–3974. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wang Y. , Finan J. E. , Middeldorp J. M. , Hayward S. D. . ( 1997; ). P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein–Barr virus. . Virology 236:, 18–29. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wu K.-H. , Tai P. C. . ( 2004; ). Cys32 and His105 are the critical residues for the calcium-dependent cysteine proteolytic activity of CvaB, an ATP-binding cassette transporter. . J Biol Chem 279:, 901–909. [CrossRef] [PubMed]
    [Google Scholar]
  52. Yu L. , Zhang Z. , Loewenstein P. M. , Desai K. , Tang Q. , Mao D. , Symington J. S. , Green M. . ( 1995; ). Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. . J Virol 69:, 3007–3016.[PubMed]
    [Google Scholar]
  53. Zarrinpar A. , Bhattacharyya R. P. , Lim W. A. . ( 2003; ). The structure and function of proline recognition domains. . Sci STKE 2003:, re8. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhou Y. , Ushijima H. , Frey T. K. . ( 2007; ). Genomic analysis of diverse rubella virus genotypes. . J Gen Virol 88:, 932–941. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038901-0
Loading
/content/journal/jgv/10.1099/vir.0.038901-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error