1887

Abstract

The Epstein–Barr virus (EBV) C promoter (Cp) regulates several genes required for B-cell proliferation in latent EBV infection. The family of repeats (FR) region of the latent origin of plasmid replication () functions as an Epstein–Barr nuclear antigen 1 (EBNA1)-dependent distant enhancer of Cp activity, and the enhancer–promoter interaction is mediated by a higher-order multi-protein complex containing several copies of EBNA1. Using DNA-affinity purification with a 170 bp region of the Cp in combination with mass spectrometry, we identified the cell cycle-regulatory protein E2F1, the E2F-binding protein ARID3A, and the B-cell-specific transcription factor Oct-2 as components of this multi-protein complex. Binding of the three factors to the FR region of was determined by DNA-affinity and immunoblot analysis. Co-immunoprecipitation and proximity ligation analysis revealed that the three factors, E2F1, ARID3A and Oct-2, interact with each other as well as with EBNA1 in the nuclei of EBV-positive cells. Using the chromatin immunoprecipitation assay, we showed that E2F1 and Oct-2 interacted with the FR part of and the Cp, but the ARID3A interaction was, however, only detected at the Cp. Our findings support the hypothesis that EBNA1 initiates transcription at the Cp via interactions between multiple EBNA1 homodimers and cellular transcription factors in a large molecular machinery that forms a dynamic interaction between Cp and FR.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038752-0
2012-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/1065.html?itemId=/content/journal/jgv/10.1099/vir.0.038752-0&mimeType=html&fmt=ahah

References

  1. Almqvist J., Zou J., Linderson Y., Borestrom C., Altiok E., Zetterberg H., Rymo L., Pettersson S., Ernberg I.. ( 2005;). Functional interaction of Oct transcription factors with the family of repeats in Epstein–Barr virus oriP. . J Gen Virol 86:, 1261–1267. [CrossRef][PubMed]
    [Google Scholar]
  2. Atanasiu C., Lezina L., Lieberman P. M.. ( 2005;). DNA affinity purification of Epstein–Barr virus OriP-binding proteins. . Methods Mol Biol 292:, 267–276.[PubMed]
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C.. & other authors ( 1984;). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. . Nature 310:, 207–211. [CrossRef][PubMed]
    [Google Scholar]
  4. Boreström C., Zetterberg H., Liff K., Rymo L.. ( 2003;). Functional interaction of nuclear factor Y and Sp1 is required for activation of the Epstein–Barr virus C promoter. . J Virol 77:, 821–829. [CrossRef][PubMed]
    [Google Scholar]
  5. Chau C. M., Zhang X. Y., McMahon S. B., Lieberman P. M.. ( 2006;). Regulation of Epstein–Barr virus latency type by the chromatin boundary factor CTCF. . J Virol 80:, 5723–5732. [CrossRef][PubMed]
    [Google Scholar]
  6. Chau C. M., Deng Z., Kang H., Lieberman P. M.. ( 2008;). Cell cycle association of the retinoblastoma protein Rb and the histone demethylase LSD1 with the Epstein–Barr virus latency promoter Cp. . J Virol 82:, 3428–3437. [CrossRef][PubMed]
    [Google Scholar]
  7. Daikoku T., Kudoh A., Fujita M., Sugaya Y., Isomura H., Tsurumi T.. ( 2004;). In vivo dynamics of EBNA1–oriP interaction during latent and lytic replication of Epstein–Barr virus. . J Biol Chem 279:, 54817–54825. [CrossRef][PubMed]
    [Google Scholar]
  8. Davenport M. G., Pagano J. S.. ( 1999;). Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein–Barr virus type I latency. . J Virol 73:, 3154–3161.[PubMed]
    [Google Scholar]
  9. Deutsch M. J., Ott E., Papior P., Schepers A.. ( 2010;). The latent origin of replication of Epstein–Barr virus directs viral genomes to active regions of the nucleus. . J Virol 84:, 2533–2546. [CrossRef][PubMed]
    [Google Scholar]
  10. Farré D., Roset R., Huerta M., Adsuara J. E., Roselló L., Albà M. M., Messeguer X.. ( 2003;). Identification of patterns in biological sequences at the alggen server: promo and malgen. . Nucleic Acids Res 31:, 3651–3653. [CrossRef][PubMed]
    [Google Scholar]
  11. Forsman A., Rüetschi U., Ekholm J., Rymo L.. ( 2008;). Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. . J Proteome Res 7:, 2309–2319. [CrossRef][PubMed]
    [Google Scholar]
  12. Frappier L., O’Donnell M.. ( 1991;). Epstein–Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein–Barr virus. . Proc Natl Acad Sci U S A 88:, 10875–10879. [CrossRef][PubMed]
    [Google Scholar]
  13. Fuentes-Pananá E. M., Peng R., Brewer G., Tan J., Ling P. D.. ( 2000;). Regulation of the Epstein–Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. . J Virol 74:, 8166–8175. [CrossRef][PubMed]
    [Google Scholar]
  14. Fukuyo Y., Mogi K., Tsunematsu Y., Nakajima T.. ( 2004;). E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies. . Cell Death Differ 11:, 747–759. [CrossRef][PubMed]
    [Google Scholar]
  15. Gregory C. D., Rowe M., Rickinson A. B.. ( 1990;). Different Epstein–Barr virus–B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. . J Gen Virol 71:, 1481–1495. [CrossRef][PubMed]
    [Google Scholar]
  16. Grossman S. R., Johannsen E., Tong X., Yalamanchili R., Kieff E.. ( 1994;). The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. . Proc Natl Acad Sci U S A 91:, 7568–7572. [CrossRef][PubMed]
    [Google Scholar]
  17. Herrscher R. F., Kaplan M. H., Lelsz D. L., Das C., Scheuermann R., Tucker P. W.. ( 1995;). The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. . Genes Dev 9:, 3067–3082. [CrossRef][PubMed]
    [Google Scholar]
  18. Ivanova I. A., Vespa A., Dagnino L.. ( 2007;). A novel mechanism of E2F1 regulation via nucleocytoplasmic shuttling: determinants of nuclear import and export. . Cell Cycle 6:, 2186–2195. [CrossRef][PubMed]
    [Google Scholar]
  19. Jarvius M., Paulsson J., Weibrecht I., Leuchowius K. J., Andersson A. C., Wählby C., Gullberg M., Botling J., Sjöblom T.. & other authors ( 2007;). In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. . Mol Cell Proteomics 6:, 1500–1509. [CrossRef][PubMed]
    [Google Scholar]
  20. Jin X. W., Speck S. H.. ( 1992;). Identification of critical cis elements involved in mediating Epstein–Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter. . J Virol 66:, 2846–2852.[PubMed]
    [Google Scholar]
  21. Kanda T., Kamiya M., Maruo S., Iwakiri D., Takada K.. ( 2007;). Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. . J Cell Sci 120:, 1529–1539. [CrossRef][PubMed]
    [Google Scholar]
  22. Kaplan M. H., Zong R. T., Herrscher R. F., Scheuermann R. H., Tucker P. W.. ( 2001;). Transcriptional activation by a matrix associating region-binding protein. Contextual requirements for the function of Bright. . J Biol Chem 276:, 21325–21330. [CrossRef][PubMed]
    [Google Scholar]
  23. Kieff E., Rickinson A. B.. ( 2001;). Epstein–Barr virus and its replication. . In Fields Virology, , 4th edn., vol. 2, pp. 2511–2574. Edited by Knipe D. M., Howley P. M., Griffin D. E., Martin M. A., Lamb R. A., Roizman B., Straus S. E... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  24. Kim D., Tucker P. W.. ( 2006;). A regulated nucleocytoplasmic shuttle contributes to Bright’s function as a transcriptional activator of immunoglobulin genes. . Mol Cell Biol 26:, 2187–2201. [CrossRef][PubMed]
    [Google Scholar]
  25. Ling P. D., Rawlins D. R., Hayward S. D.. ( 1993;). The Epstein–Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. . Proc Natl Acad Sci U S A 90:, 9237–9241. [CrossRef][PubMed]
    [Google Scholar]
  26. Mackey D., Sugden B.. ( 1999;). The linking regions of EBNA1 are essential for its support of replication and transcription. . Mol Cell Biol 19:, 3349–3359.[PubMed]
    [Google Scholar]
  27. Maruo S., Johannsen E., Illanes D., Cooper A., Zhao B., Kieff E.. ( 2005;). Epstein–Barr virus nuclear protein 3A domains essential for growth of lymphoblasts: transcriptional regulation through RBP-Jκ/CBF1 is critical. . J Virol 79:, 10171–10179. [CrossRef][PubMed]
    [Google Scholar]
  28. Maser R. S., Mirzoeva O. K., Wells J., Olivares H., Williams B. R., Zinkel R. A., Farnham P. J., Petrini J. H.. ( 2001;). Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. . Mol Cell Biol 21:, 6006–6016. [CrossRef][PubMed]
    [Google Scholar]
  29. Messeguer X., Escudero R., Farré D., Núñez O., Martínez J., Albà M. M.. ( 2002;). promo: detection of known transcription regulatory elements using species-tailored searches. . Bioinformatics 18:, 333–334. [CrossRef][PubMed]
    [Google Scholar]
  30. Nelson J. D., Denisenko O., Bomsztyk K.. ( 2006;). Protocol for the fast chromatin immunoprecipitation (ChIP) method. . Nat Protoc 1:, 179–185. [CrossRef][PubMed]
    [Google Scholar]
  31. Niedojadlo J., Perret-Vivancos C., Kalland K. H., Cmarko D., Cremer T., van Driel R., Fakan S.. ( 2011;). Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei. . Exp Cell Res 317:, 433–444. [CrossRef][PubMed]
    [Google Scholar]
  32. Nilsson T., Sjöblom A., Masucci M. G., Rymo L.. ( 1993;). Viral and cellular factors influence the activity of the Epstein–Barr virus BCR2 and BWR1 promoters in cells of different phenotype. . Virology 193:, 774–785. [CrossRef][PubMed]
    [Google Scholar]
  33. Nilsson T., Zetterberg H., Wang Y. C., Rymo L.. ( 2001;). Promoter-proximal regulatory elements involved in oriP-EBNA1-independent and -dependent activation of the Epstein–Barr virus C promoter in B-lymphoid cell lines. . J Virol 75:, 5796–5811. [CrossRef][PubMed]
    [Google Scholar]
  34. Nixon J. C., Rajaiya J. B., Ayers N., Evetts S., Webb C. F.. ( 2004;). The transcription factor, Bright, is not expressed in all human B lymphocyte subpopulations. . Cell Immunol 228:, 42–53. [CrossRef][PubMed]
    [Google Scholar]
  35. Paulson E. J., Fingeroth J. D., Yates J. L., Speck S. H.. ( 2002;). Methylation of the EBV genome and establishment of restricted latency in low-passage EBV-infected 293 epithelial cells. . Virology 299:, 109–121. [CrossRef][PubMed]
    [Google Scholar]
  36. Rickinson A. B., Kieff E.. ( 2001;). Epstein–Barr virus. . In Fields Virology, , 4th edn., vol. 2, pp. 2575–2627. Edited by Knipe D. M., Howley P. M., Griffin D. E., Martin M. A., Lamb R. A., Roizman B., Straus S. E... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  37. Sample J., Henson E. B., Sample C.. ( 1992;). The Epstein–Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. . J Virol 66:, 4654–4661.[PubMed]
    [Google Scholar]
  38. Söderberg O., Gullberg M., Jarvius M., Ridderstråle K., Leuchowius K. J., Jarvius J., Wester K., Hydbring P., Bahram F.. & other authors ( 2006;). Direct observation of individual endogenous protein complexes in situ by proximity ligation. . Nat Methods 3:, 995–1000. [CrossRef][PubMed]
    [Google Scholar]
  39. Sung N. S., Kenney S., Gutsch D., Pagano J. S.. ( 1991;). EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein–Barr virus. . J Virol 65:, 2164–2169.[PubMed]
    [Google Scholar]
  40. Suzuki M., Okuyama S., Okamoto S., Shirasuna K., Nakajima T., Hachiya T., Nojima H., Sekiya S., Oda K.. ( 1998;). A novel E2F binding protein with Myc-type HLH motif stimulates E2F-dependent transcription by forming a heterodimer. . Oncogene 17:, 853–865. [CrossRef][PubMed]
    [Google Scholar]
  41. Tempera I., Klichinsky M., Lieberman P. M.. ( 2011;). EBV latency types adopt alternative chromatin conformations. . PLoS Pathog 7:, e1002180. [CrossRef][PubMed]
    [Google Scholar]
  42. Webb C. F., Das C., Eaton S., Calame K., Tucker P. W.. ( 1991;). Novel protein–DNA interactions associated with increased immunoglobulin transcription in response to antigen plus interleukin-5. . Mol Cell Biol 11:, 5197–5205.[PubMed]
    [Google Scholar]
  43. Webb C. F., Smith E. A., Medina K. L., Buchanan K. L., Smithson G., Dou S.. ( 1998;). Expression of Bright at two distinct stages of B lymphocyte development. . J Immunol 160:, 4747–4754.[PubMed]
    [Google Scholar]
  44. Zeng P. Y., Vakoc C. R., Chen Z. C., Blobel G. A., Berger S. L.. ( 2006;). In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. . Biotechniques 41:, 694–698. [CrossRef][PubMed]
    [Google Scholar]
  45. Zetterberg H., Boreström C., Nilsson T., Rymo L.. ( 2004;). Multiple EBNA1-binding sites within oriPI are required for EBNA1-dependent transactivation of the Epstein–Barr virus C promoter. . Int J Oncol 25:, 693–696.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038752-0
Loading
/content/journal/jgv/10.1099/vir.0.038752-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error