1887

Abstract

Viral diseases are significant impediments to the sustainability of shrimp aquaculture. In addition to endemic disease, new viral diseases continue to emerge and cause significant impact on the shrimp industry. Disease caused by infectious myonecrosis virus (IMNV) has caused tremendous losses in farmed Pacific white shrimp () since it emerged in Brazil and translocated to Indonesia. There are no existing antiviral interventions, outside of pathogen exclusion, to mitigate disease in commercial shrimp operations. Here, we describe an iterative process of panning the genome of IMNV to discover RNA interference trigger sequences that initiate a robust and long-lasting protective response against IMNV in . Using this process, a single, low dose (0.02 µg) of an 81 or 153 bp fragment, with sequence corresponding to putative cleavage protein 1 in ORF1, protected 100 % of animals from disease and mortality caused by IMNV. Furthermore, animals that were treated with highly efficacious dsRNA survived an initial infection and were resistant to subsequent infections over 50 days later with a 100-fold greater dose of virus. This protection is probably sequence dependent, because targeting the coding regions for the polymerase or structural genes of IMNV conferred lesser or no protection. Interestingly, non-sequence specific dsRNA did not provide any degree of protection to animals as had been described for other shrimp viruses. Our data indicate that the targeted region for dsRNA is a crucial factor in maximizing the degree of protection and lowering the dose required to induce a protective effect against IMNV infection in shrimp.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038653-0
2012-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/880.html?itemId=/content/journal/jgv/10.1099/vir.0.038653-0&mimeType=html&fmt=ahah

References

  1. Andrade T. P. D., Srisuvan T., Tang K. F. J., Lightner D. V.. ( 2007;). Real-time reverse transcription polymerase chain reaction assay using TaqMan probe for detection and quantification of infectious myonecrosis virus (IMNV). . Aquaculture 264:, 9–15. [CrossRef]
    [Google Scholar]
  2. Bell T. A., Lightner D. V.. ( 1988;). A Handbook of Normal Shrimp Histology Baton Rouge, USA:: World Aquaculture Society Press;.
    [Google Scholar]
  3. Dechklar M., Udomkit A., Panyim S.. ( 2008;). Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference. . Biochem Biophys Res Commun 367:, 768–774. [CrossRef][PubMed]
    [Google Scholar]
  4. FAO ( 2009;). FishStat Plus – Fishery Statistical software. . http://www.fao.org/fishery/statistics/software/fishstat/en
  5. Franz A. W. E., Sanchez-Vargas I., Adelman Z. N., Blair C. D., Beaty B. J., James A. A., Olson K. E.. ( 2006;). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. . Proc Natl Acad Sci U S A 103:, 4198–4203. [CrossRef][PubMed]
    [Google Scholar]
  6. Hasson K. W., Lightner D. V., Poulos B. T., Redman R. M., White B. L., Brock J. A., Bonami J. R.. ( 1995;). Taura syndrome in Penaeus vannamei: demonstration of a viral etiology. . Dis Aquat Organ 23:, 115–126. [CrossRef]
    [Google Scholar]
  7. Hirono I., Fagutao F. F., Kondo H., Aoki T.. ( 2011;). Uncovering the mechanisms of shrimp innate immune response by RNA interference. . Mar Biotechnol (NY) 13:, 622–628. [CrossRef][PubMed]
    [Google Scholar]
  8. Krishnan P., Gireesh-Babu P., Rajendran K. V., Chaudhari A.. ( 2009;). RNA interference-based therapeutics for shrimp viral diseases. . Dis Aquat Organ 86:, 263–272. [CrossRef][PubMed]
    [Google Scholar]
  9. Labreuche Y., Veloso A., de la Vega E., Gross P. S., Chapman R. W., Browdy C. L., Warr G. W.. ( 2010;). Non-specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp Litopenaeus vannamei. . Dev Comp Immunol 34:, 1209–1218. [CrossRef][PubMed]
    [Google Scholar]
  10. Li H., Li W. X., Ding S. W.. ( 2002;). Induction and suppression of RNA silencing by an animal virus. . Science 296:, 1319–1321. [CrossRef][PubMed]
    [Google Scholar]
  11. Lightner D. V.. ( 2003;). The penaeid shrimp viral pandemics due to IHHNV, WSSV, TSV and YHV: history in the Americas and current status. . In Proceedings of the 32nd UJNR Aquaculture Panel Symposium, pp. 17–20. Davis and Santa Barbara, California, USA.
    [Google Scholar]
  12. Nibert M. L.. ( 2007;). ‘2A-like’ and ‘shifty heptamer’ motifs in penaeid shrimp infectious myonecrosis virus, a monosegmented double-stranded RNA virus. . J Gen Virol 88:, 1315–1318. [CrossRef][PubMed]
    [Google Scholar]
  13. Poulos B. T., Tang K. F. J., Pantoja C. R., Bonami J. R., Lightner D. V.. ( 2006;). Purification and characterization of infectious myonecrosis virus of penaeid shrimp. . J Gen Virol 87:, 987–996. [CrossRef][PubMed]
    [Google Scholar]
  14. Robalino J., Browdy C. L., Prior S., Metz A., Parnell P., Gross P., Warr G.. ( 2004;). Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. . J Virol 78:, 10442–10448. [CrossRef][PubMed]
    [Google Scholar]
  15. Robalino J., Bartlett T., Shepard E., Prior S., Jaramillo G., Scura E., Chapman R. W., Gross P. S., Browdy C. L., Warr G. W.. ( 2005;). Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response?. J Virol 79:, 13561–13571. [CrossRef][PubMed]
    [Google Scholar]
  16. Robalino J., Bartlett T. C., Chapman R. W., Gross P. S., Browdy C. L., Warr G. W.. ( 2007;). Double-stranded RNA and antiviral immunity in marine shrimp: inducible host mechanisms and evidence for the evolution of viral counter-responses. . Dev Comp Immunol 31:, 539–547. [CrossRef][PubMed]
    [Google Scholar]
  17. Senapin S., Phewsaiya K., Briggs M., Flegel T. W.. ( 2007;). Outbreaks of infectious myonecrosis virus (IMNV) in Indonesia confirmed by genome sequencing and use of an alternative RT-PCR detection method. . Aquaculture 266:, 32–38. [CrossRef]
    [Google Scholar]
  18. Shekhar M. S., Lu Y.. ( 2009;). Application of nucleic-acid-based therapeutics for viral infections in shrimp aquaculture. . Mar Biotechnol (NY) 11:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  19. Su J., Oanh D. T., Lyons R. E., Leeton L., van Hulten M. C., Tan S. H., Song L., Rajendran K. V., Walker P. J.. ( 2008;). A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: identification and functional characterisation of Dicer-1. . Fish Shellfish Immunol 24:, 223–233. [CrossRef][PubMed]
    [Google Scholar]
  20. Sun D., Rösler C., Kidd-Ljunggren K., Nassal M.. ( 2010;). Quantitative assessment of the antiviral potencies of 21 shRNA vectors targeting conserved, including structured, hepatitis B virus sites. . J Hepatol 52:, 817–826. [CrossRef][PubMed]
    [Google Scholar]
  21. Tirasophon W., Roshorm Y., Panyim S.. ( 2005;). Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. . Biochem Biophys Res Commun 334:, 102–107. [CrossRef][PubMed]
    [Google Scholar]
  22. Tirasophon W., Yodmuang S., Chinnirunvong W., Plongthongkum N., Panyim S.. ( 2007;). Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. . Antiviral Res 74:, 150–155. [CrossRef][PubMed]
    [Google Scholar]
  23. Unajak S., Boonsaeng V., Jitrapakdee S.. ( 2006;). Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp (Penaeus monodon). . Comp Biochem Physiol B Biochem Mol Biol 145:, 179–187. [CrossRef][PubMed]
    [Google Scholar]
  24. van Rij R. P., Saleh M. C., Berry B., Foo C., Houk A., Antoniewski C., Andino R.. ( 2006;). The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. . Genes Dev 20:, 2985–2995. [CrossRef][PubMed]
    [Google Scholar]
  25. Walker P. J., Mohan C. V.. ( 2009;). Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. . Reviews Aquaculture 1:, 125–154. [CrossRef]
    [Google Scholar]
  26. Walker P. J., Winton J. R.. ( 2010;). Emerging viral diseases of fish and shrimp. . Vet Res 41:, 51. [CrossRef][PubMed]
    [Google Scholar]
  27. Westenberg M., Heinhuis B., Zuidema D., Vlak J. M.. ( 2005;). siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. . Virus Res 114:, 133–139. [CrossRef][PubMed]
    [Google Scholar]
  28. Xu J., Han F., Zhang X.. ( 2007;). Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. . Antiviral Res 73:, 126–131. [CrossRef][PubMed]
    [Google Scholar]
  29. Yodmuang S., Tirasophon W., Roshorm Y., Chinnirunvong W., Panyim S.. ( 2006;). YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. . Biochem Biophys Res Commun 341:, 351–356. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038653-0
Loading
/content/journal/jgv/10.1099/vir.0.038653-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error