1887

Abstract

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the genus , family , that is responsible for sporadic outbreaks in human and equid populations in Central and South America. In order to ascertain the role that complement plays in resolving VEEV-induced disease, complement-deficient C3 mice were infected with a VEEV mutant (V3533) that caused mild, transient disease in immunocompetent mice. In the absence of a functional complement system, peripheral inoculation with V3533 induced much more severe encephalitis. This enhanced pathology was associated with a delay in clearance of infectious virus from the serum and more rapid invasion of the central nervous system in C3 mice. If V3533 was inoculated directly into the brain, however, disease outcome in C3 and wild-type mice was identical. These findings indicate that complement-dependent enhancement of peripheral virus clearance is critical for protecting against the development of severe VEEV-induced encephalitis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038281-0
2012-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/797.html?itemId=/content/journal/jgv/10.1099/vir.0.038281-0&mimeType=html&fmt=ahah

References

  1. Anishchenko M. , Bowen R. A. , Paessler S. , Austgen L. , Greene I. P. , Weaver S. C. . ( 2006; ). Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. . Proc Natl Acad Sci U S A 103:, 4994–4999. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aronson J. F. , Grieder F. B. , Davis N. L. , Charles P. C. , Knott T. , Brown K. , Johnston R. E. . ( 2000; ). A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan equine encephalitis virus. . Virology 270:, 111–123. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrington R. A. , Pozdnyakova O. , Zafari M. R. , Benjamin C. D. , Carroll M. C. . ( 2002; ). B lymphocyte memory: role of stromal cell complement and FcγRIIB receptors. . J Exp Med 196:, 1189–1200. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brooke C. B. , Deming D. J. , Whitmore A. C. , White L. J. , Johnston R. E. . ( 2010; ). T cells facilitate recovery from Venezuelan equine encephalitis virus-induced encephalomyelitis in the absence of antibody. . J Virol 84:, 4556–4568. [CrossRef] [PubMed]
    [Google Scholar]
  5. Byrnes A. P. , Griffin D. E. . ( 2000; ). Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. . J Virol 74:, 644–651. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carrara A. S. , Gonzales G. , Ferro C. , Tamayo M. , Aronson J. , Paessler S. , Anishchenko M. , Boshell J. , Weaver S. C. . ( 2005; ). Venezuelan equine encephalitis virus infection of spiny rats. . Emerg Infect Dis 11:, 663–669.[PubMed] [CrossRef]
    [Google Scholar]
  7. Carroll M. C. . ( 2004; ). The complement system in regulation of adaptive immunity. . Nat Immunol 5:, 981–986. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carter R. H. , Fearon D. T. . ( 1992; ). CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. . Science 256:, 105–107. [CrossRef] [PubMed]
    [Google Scholar]
  9. Charles P. C. , Walters E. , Margolis F. , Johnston R. E. . ( 1995; ). Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. . Virology 208:, 662–671. [CrossRef] [PubMed]
    [Google Scholar]
  10. Charles P. C. , Trgovcich J. , Davis N. L. , Johnston R. E. . ( 2001; ). Immunopathogenesis and immune modulation of Venezuelan equine encephalitis virus-induced disease in the mouse. . Virology 284:, 190–202. [CrossRef] [PubMed]
    [Google Scholar]
  11. Coro E. S. , Chang W. L. , Baumgarth N. . ( 2006; ). Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. . J Immunol 176:, 4343–4351.[PubMed] [CrossRef]
    [Google Scholar]
  12. Davis N. L. , Willis L. V. , Smith J. F. , Johnston R. E. . ( 1989; ). In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. . Virology 171:, 189–204. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fazakerley J. K. , Buchmeier M. J. . ( 1993; ). Pathogenesis of virus-induced demyelination. . Adv Virus Res 42:, 249–324. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fink K. , Lang K. S. , Manjarrez-Orduno N. , Junt T. , Senn B. M. , Holdener M. , Akira S. , Zinkernagel R. M. , Hengartner H. . ( 2006; ). Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. . Eur J Immunol 36:, 2094–2105. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ghiran I. , Barbashov S. F. , Klickstein L. B. , Tas S. W. , Jensenius J. C. , Nicholson-Weller A. . ( 2000; ). Complement receptor 1/CD35 is a receptor for mannan-binding lectin. . J Exp Med 192:, 1797–1808. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gleiser C. A. , Gochenour W. S. Jr , Berge T. O. , Tigertt W. D. . ( 1962; ). The comparative pathology of experimental Venezuelan equine encephalomyelitis infection in different animal hosts. . J Infect Dis 110:, 80–97. [CrossRef] [PubMed]
    [Google Scholar]
  17. Grieder F. B. , Davis N. L. , Aronson J. F. , Charles P. C. , Sellon D. C. , Suzuki K. , Johnston R. E. . ( 1995; ). Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. . Virology 206:, 994–1006. [CrossRef] [PubMed]
    [Google Scholar]
  18. Griffin D. E. . ( 2001; ). Alphaviruses. . In Fields Virology, , 4th edn., pp. 917–962. Edited by Knipe D. M. , Howley P. M. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  19. Gutzmer R. , Köther B. , Zwirner J. , Dijkstra D. , Purwar R. , Wittmann M. , Werfel T. . ( 2006; ). Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a and are chemoattracted to C3a and C5a. . J Invest Dermatol 126:, 2422–2429. [CrossRef] [PubMed]
    [Google Scholar]
  20. Helmy K. Y. , Katschke K. J. Jr , Gorgani N. N. , Kljavin N. M. , Elliott J. M. , Diehl L. , Scales S. J. , Ghilardi N. , van Lookeren Campagne M. . ( 2006; ). CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. . Cell 124:, 915–927. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hirsch R. L. , Griffin D. E. , Winkelstein J. A. . ( 1978; ). The effect of complement depletion on the course of Sindbis virus infection in mice. . J Immunol 121:, 1276–1278.[PubMed]
    [Google Scholar]
  22. Hirsch R. L. , Griffin D. E. , Winkelstein J. A. . ( 1980; ). The role of complement in viral infections. II. The clearance of Sindbis virus from the bloodstream and central nervous system of mice depleted of complement. . J Infect Dis 141:, 212–217. [CrossRef] [PubMed]
    [Google Scholar]
  23. Holers V. M. , Kinoshita T. , Molina H. . ( 1992; ). The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. . Immunol Today 13:, 231–236. [CrossRef] [PubMed]
    [Google Scholar]
  24. Irani D. N. , Griffin D. E. . ( 1996; ). Regulation of lymphocyte homing into the brain during viral encephalitis at various stages of infection. . J Immunol 156:, 3850–3857.[PubMed]
    [Google Scholar]
  25. Jahrling P. B. . ( 1976; ). Virulence heterogeneity of a predominantly avirulent Western equine encephalitis virus population. . J Gen Virol 32:, 121–128. [CrossRef] [PubMed]
    [Google Scholar]
  26. Jahrling P. B. , Gorelkin L. . ( 1975; ). Selective clearance of a benign clone of Venezuelan equine encephalitis virus from hamster plasma by hepatic reticuloendothelial cells. . J Infect Dis 132:, 667–676. [CrossRef] [PubMed]
    [Google Scholar]
  27. Jahrling P. B. , Scherer W. F. . ( 1973; ). Growth curves and clearance rates of virulent and benign Venezuelan encephalitis viruses in hamsters. . Infect Immun 8:, 456–462.[PubMed]
    [Google Scholar]
  28. Kang Y.-S. , Do Y. , Lee H.-K. , Park S. H. , Cheong C. , Lynch R. M. , Loeffler J. M. , Steinman R. M. , Park C. G. . ( 2006; ). A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. . Cell 125:, 47–58. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kemper C. , Atkinson J. P. . ( 2007; ). T-cell regulation: with complements from innate immunity. . Nat Rev Immunol 7:, 9–18. [CrossRef] [PubMed]
    [Google Scholar]
  30. Klickstein L. B. , Barbashov S. F. , Liu T. , Jack R. M. , Nicholson-Weller A. . ( 1997; ). Complement receptor type 1 (CR1, CD35) is a receptor for C1q. . Immunity 7:, 345–355. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kopf M. , Abel B. , Gallimore A. , Carroll M. , Bachmann M. F. . ( 2002; ). Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. . Nat Med 8:, 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  32. Levine B. , Hardwick J. M. , Trapp B. D. , Crawford T. O. , Bollinger R. C. , Griffin D. E. . ( 1991; ). Antibody-mediated clearance of alphavirus infection from neurons. . Science 254:, 856–860. [CrossRef] [PubMed]
    [Google Scholar]
  33. Li B. , Allendorf D. J. , Hansen R. , Marroquin J. , Ding C. , Cramer D. E. , Yan J. . ( 2006; ). Yeast β-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. . J Immunol 177:, 1661–1669.[PubMed] [CrossRef]
    [Google Scholar]
  34. MacDonald G. H. , Johnston R. E. . ( 2000; ). Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. . J Virol 74:, 914–922. [CrossRef] [PubMed]
    [Google Scholar]
  35. Marker S. C. , Jahrling P. B. . ( 1979; ). Correlation between virus–cell receptor properties of alphaviruses in vitro and virulence in vivo . . Arch Virol 62:, 53–62. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mathews J. H. , Roehrig J. T. . ( 1982; ). Determination of the protective epitopes on the glycoproteins of Venezuelan equine encephalomyelitis virus by passive transfer of monoclonal antibodies. . J Immunol 129:, 2763–2767.[PubMed]
    [Google Scholar]
  37. McWilliam A. S. , Napoli S. , Marsh A. M. , Pemper F. L. , Nelson D. J. , Pimm C. L. , Stumbles P. A. , Wells T. N. , Holt P. G. . ( 1996; ). Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. . J Exp Med 184:, 2429–2432. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mehlhop E. , Diamond M. S. . ( 2006; ). Protective immune responses against West Nile virus are primed by distinct complement activation pathways. . J Exp Med 203:, 1371–1381. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mehlhop E. , Whitby K. , Oliphant T. , Marri A. , Engle M. , Diamond M. S. . ( 2005; ). Complement activation is required for induction of a protective antibody response against West Nile virus infection. . J Virol 79:, 7466–7477. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mócsai A. , Zhou M. , Meng F. , Tybulewicz V. L. , Lowell C. A. . ( 2002; ). Syk is required for integrin signaling in neutrophils. . Immunity 16:, 547–558. [CrossRef] [PubMed]
    [Google Scholar]
  41. Morrison T. E. , Fraser R. J. , Smith P. N. , Mahalingam S. , Heise M. T. . ( 2007; ). Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. . J Virol 81:, 5132–5143. [CrossRef] [PubMed]
    [Google Scholar]
  42. Moulton E. A. , Atkinson J. P. , Buller R. M. . ( 2008; ). Surviving mousepox infection requires the complement system. . PLoS Pathog 4:, e1000249. [CrossRef] [PubMed]
    [Google Scholar]
  43. Norgauer J. , Dobos G. , Kownatzki E. , Dahinden C. , Burger R. , Kupper R. , Gierschik P. . ( 1993; ). Complement fragment C3a stimulates Ca2+ influx in neutrophils via a pertussis-toxin-sensitive G protein. . Eur J Biochem 217:, 289–294. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ochsenbein A. F. , Zinkernagel R. M. . ( 2000; ). Natural antibodies and complement link innate and acquired immunity. . Immunol Today 21:, 624–630. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ochsenbein A. F. , Pinschewer D. D. , Odermatt B. , Carroll M. C. , Hengartner H. , Zinkernagel R. M. . ( 1999; ). Protective T cell-independent antiviral antibody responses are dependent on complement. . J Exp Med 190:, 1165–1174. [CrossRef] [PubMed]
    [Google Scholar]
  46. Paessler S. , Yun N. E. , Judy B. M. , Dziuba N. , Zacks M. A. , Grund A. H. , Frolov I. , Campbell G. A. , Weaver S. C. , Estes D. M. . ( 2007; ). αβ T cells provide protection against lethal encephalitis in the murine model of VEEV infection. . Virology 367:, 307–323. [CrossRef] [PubMed]
    [Google Scholar]
  47. Pushko P. , Parker M. , Ludwig G. V. , Davis N. L. , Johnston R. E. , Smith J. F. . ( 1997; ). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. . Virology 239:, 389–401. [CrossRef] [PubMed]
    [Google Scholar]
  48. Roozendaal R. , Carroll M. C. . ( 2006; ). Emerging patterns in complement-mediated pathogen recognition. . Cell 125:, 29–32. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ross G. D. . ( 2000; ). Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/αMβ2-integrin glycoprotein. . Crit Rev Immunol 20:, 197–222.[PubMed] [CrossRef]
    [Google Scholar]
  50. Simpson D. A. , Davis N. L. , Lin S.-C. , Russell D. , Johnston R. E. . ( 1996; ). Complete nucleotide sequence and full-length cDNA clone of S.A.AR86 a South African alphavirus related to Sindbis. . Virology 222:, 464–469. [CrossRef] [PubMed]
    [Google Scholar]
  51. Verschoor A. , Brockman M. A. , Gadjeva M. , Knipe D. M. , Carroll M. C. . ( 2003; ). Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. . J Immunol 171:, 5363–5371.[PubMed] [CrossRef]
    [Google Scholar]
  52. Walport M. J. . ( 2001; ). Complement. Second of two parts. . N Engl J Med 344:, 1140–1144.[PubMed] [CrossRef]
    [Google Scholar]
  53. Wang E. , Bowen R. A. , Medina G. , Powers A. M. , Kang W. , Chandler L. M. , Shope R. E. , Weaver S. C. . ( 2001; ). Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. . Am J Trop Med Hyg 65:, 64–69.[PubMed]
    [Google Scholar]
  54. Weaver S. C. , Barrett A. D. . ( 2004; ). Transmission cycles, host range, evolution and emergence of arboviral disease. . Nat Rev Microbiol 2:, 789–801. [CrossRef] [PubMed]
    [Google Scholar]
  55. Weaver S. C. , Salas R. , Rico-Hesse R. , Ludwig G. V. , Oberste M. S. , Boshell J. , Tesh R. B. . VEE Study Group ( 1996; ). Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. . Lancet 348:, 436–440. [CrossRef] [PubMed]
    [Google Scholar]
  56. Weaver S. C. , Ferro C. , Barrera R. , Boshell J. , Navarro J. C. . ( 2004; ). Venezuelan equine encephalitis. . Annu Rev Entomol 49:, 141–174. [CrossRef] [PubMed]
    [Google Scholar]
  57. White L. J. , Wang J.-G. , Davis N. L. , Johnston R. E. . ( 2001; ). Role of alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis: effect of an attenuating mutation in the 5′ untranslated region. . J Virol 75:, 3706–3718. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zipfel P. F. , Skerka C. . ( 2009; ). Complement regulators and inhibitory proteins. . Nat Rev Immunol 9:, 729–740.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038281-0
Loading
/content/journal/jgv/10.1099/vir.0.038281-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error