1887

Abstract

The oncogenic E6 proteins produced by high-risk human papillomaviruses (HPVs) are invariably expressed in cervical carcinomas and are multifunctional proteins capable of affecting host-cell proliferation by binding and deregulating key host molecules such as p53. High-risk HPVs, including HPV16, have the unique ability to splice the E6 viral transcript, resulting in the production of a truncated E6 protein known as E6*I whose precise biological function is unclear. This study explored the changes in gene expression of the cervical cancer C33A cell line stably expressing HPV16 E6*I (16E6*I) and observed the upregulation of ten genes. Two of these genes were aldo-keto reductases (AKR1Cs), AKR1C1 and AKR1C3, which have been implicated in drug resistance. The results demonstrated that expression of 16E6*I, but not full-length E6, specifically increased transcript levels although it did not alter transcript levels. HPV16 E7 alone also had the ability to cause a moderate increase in at both mRNA and protein levels. Site-directed mutagenesis of 16E6*I revealed that transactivation activity was abolished in R8A, R10A and T17A 16E6*I mutants without altering their intracellular localization patterns. Loss of transactivation activity of the 16E6*I mutants resulted in a significant loss of AKR1C expression and a decrease in drug resistance. Analysis of the promoter revealed that, unlike the E6 protein, 16E6*I does not mediate transactivation activity solely through Sp1-binding sites. Taken together, it was concluded that 16E6*I has a novel function in upregulating expression of and, in concert with E7, has implications for drug treatment in HPV-mediated cervical cancer.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038265-0
2012-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/1081.html?itemId=/content/journal/jgv/10.1099/vir.0.038265-0&mimeType=html&fmt=ahah

References

  1. Badaracco G. , Savarese A. , Micheli A. , Rizzo C. , Paolini F. , Carosi M. , Cutillo G. , Vizza E. , Arcangeli G. , Venuti A. . ( 2010; ). Persistence of HPV after radio-chemotherapy in locally advanced cervical cancer. . Oncol Rep 23:, 1093–1099.[PubMed]
    [Google Scholar]
  2. Borbély A. A. , Murvai M. , Kónya J. , Beck Z. , Gergely L. , Li F. , Veress G. . ( 2006; ). Effects of human papillomavirus type 16 oncoproteins on survivin gene expression. . J Gen Virol 87:, 287–294. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen J. , Adikari M. , Pallai R. , Parekh H. K. , Simpkins H. . ( 2008; ). Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. . Cancer Chemother Pharmacol 61:, 979–987. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chen J. , Emara N. , Solomides C. , Parekh H. , Simpkins H. . ( 2010; ). Resistance to platinum-based chemotherapy in lung cancer cell lines. . Cancer Chemother Pharmacol 66:, 1103–1111. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chien C.-W. , Ho I.-C. , Lee T.-C. . ( 2009; ). Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. . Carcinogenesis 30:, 1813–1820. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cricca M. , Venturoli S. , Leo E. , Costa S. , Musiani M. , Zerbini M. . ( 2009; ). Molecular analysis of HPV 16 E6I/E6II spliced mRNAs and correlation with the viral physical state and the grade of the cervical lesion. . J Med Virol 81:, 1276–1282. [CrossRef] [PubMed]
    [Google Scholar]
  7. de la Cruz-Hernández E. , García-Carrancá A. , Mohar-Betancourt A. , Dueñas-González A. , Contreras-Paredes A. , Pérez-Cardenas E. , Herrera-Goepfert R. , Lizano-Soberón M. . ( 2005; ). Differential splicing of E6 within human papillomavirus type 18 variants and functional consequences. . J Gen Virol 86:, 2459–2468. [CrossRef] [PubMed]
    [Google Scholar]
  8. Deng H. B. , Adikari M. , Parekh H. K. , Simpkins H. . ( 2004; ). Ubiquitous induction of resistance to platinum drugs in human ovarian, cervical, germ-cell and lung carcinoma tumor cells overexpressing isoforms 1 and 2 of dihydrodiol dehydrogenase. . Cancer Chemother Pharmacol 54:, 301–307. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dey A. , Atcha I. A. , Bagchi S. . ( 1997; ). HPV16 E6 oncoprotein stimulates the transforming growth factor-β1 promoter in fibroblasts through a specific GC-rich sequence. . Virology 228:, 190–199. [CrossRef] [PubMed]
    [Google Scholar]
  10. Filippova M. , Johnson M. M. , Bautista M. , Filippov V. , Fodor N. , Tungteakkhun S. S. , Williams K. , Duerksen-Hughes P. J. . ( 2007; ). The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. . J Virol 81:, 4116–4129. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gewin L. , Galloway D. A. . ( 2001; ). E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc . . J Virol 75:, 7198–7201. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gewin L. , Myers H. , Kiyono T. , Galloway D. A. . ( 2004; ). Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. . Genes Dev 18:, 2269–2282. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hasan U. A. , Bates E. , Takeshita F. , Biliato A. , Accardi R. , Bouvard V. , Mansour M. , Vincent I. , Gissmann L. . & other authors ( 2007; ). TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. . J Immunol 178:, 3186–3197.[PubMed] [CrossRef]
    [Google Scholar]
  14. Howie H. L. , Katzenellenbogen R. A. , Galloway D. A. . ( 2009; ). Papillomavirus E6 proteins. . Virology 384:, 324–334. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hsu N.-Y. , Ho H.-C. , Chow K.-C. , Lin T.-Y. , Shih C.-S. , Wang L.-S. , Tsai C.-M. . ( 2001; ). Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer. . Cancer Res 61:, 2727–2731.[PubMed]
    [Google Scholar]
  16. Huertas-Salgado A. , Martín-Gámez D. C. , Moreno P. , Murillo R. , Bravo M. M. , Villa L. , Molano M. . ( 2011; ). E6 molecular variants of human papillomavirus (HPV) type 16: an updated and unified criterion for clustering and nomenclature. . Virology 410:, 201–215. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ji Q. , Aoyama C. , Nien Y.-D. , Liu P. I. , Chen P. K. , Chang L. , Stanczyk F. Z. , Stolz A. . ( 2004; ). Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signaling. . Cancer Res 64:, 7610–7617. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ji Q. , Chang L. , Stanczyk F. Z. , Ookhtens M. , Sherrod A. , Stolz A. . ( 2007; ). Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. . Cancer Res 67:, 1361–1369. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kösel S. , Burggraf S. , Engelhardt W. , Olgemöller B. . ( 2007; ). Increased levels of HPV16 E6*I transcripts in high-grade cervical cytology and histology (CIN II+) detected by rapid real-time RT-PCR amplification. . Cytopathology 18:, 290–299. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kumar A. , Zhao Y. , Meng G. , Zeng M. , Srinivasan S. , Delmolino L. M. , Gao Q. , Dimri G. , Weber G. F. . & other authors ( 2002; ). Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. . Mol Cell Biol 22:, 5801–5812. [CrossRef] [PubMed]
    [Google Scholar]
  21. Laochariyakul P. , Ponglikitmongkol M. , Mankhetkorn S. . ( 2003; ). Functional study of intracellular P-gp- and MRP1-mediated pumping of free cytosolic pirarubicin into acidic organelles in intrinsic resistant SiHa cells. . Can J Physiol Pharmacol 81:, 790–799. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liu Y. , Chen J. J. , Gao Q. , Dalal S. , Hong Y. , Mansur C. P. , Band V. , Androphy E. J. . ( 1999; ). Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. . J Virol 73:, 7297–7307.[PubMed]
    [Google Scholar]
  23. Liu X. , Yuan H. , Fu B. , Disbrow G. L. , Apolinario T. , Tomaic V. , Kelley M. L. , Baker C. C. , Huibregtse J. , Schlegel R. . ( 2005; ). The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. . J Biol Chem 280:, 10807–10816. [CrossRef] [PubMed]
    [Google Scholar]
  24. López-Ocejo O. , Viloria-Petit A. , Bequet-Romero M. , Mukhopadhyay D. , Rak J. , Kerbel R. S. . ( 2000; ). Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. . Oncogene 19:, 4611–4620. [CrossRef] [PubMed]
    [Google Scholar]
  25. Münger K. , Phelps W. C. , Bubb V. , Howley P. M. , Schlegel R. . ( 1989; ). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. . J Virol 63:, 4417–4421.[PubMed]
    [Google Scholar]
  26. Muñoz N. , Bosch F. X. , de Sanjosé S. , Herrero R. , Castellsagué X. , Shah K. V. , Snijders P. J. , Meijer C. J. . International Agency for Research on Cancer Multicenter Cervical Cancer Study Group ( 2003; ). Epidemiologic classification of human papillomavirus types associated with cervical cancer. . N Engl J Med 348:, 518–527. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nees M. , Geoghegan J. M. , Hyman T. , Frank S. , Miller L. , Woodworth C. D. . ( 2001; ). Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. . J Virol 75:, 4283–4296. [CrossRef] [PubMed]
    [Google Scholar]
  28. Oh S. T. , Kyo S. , Laimins L. A. . ( 2001; ). Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. . J Virol 75:, 5559–5566. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pallai R. , Simpkins H. , Chen J. , Parekh H. K. . ( 2010; ). The CCAAT box binding transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene. . Gene 459:, 11–23. [CrossRef] [PubMed]
    [Google Scholar]
  30. Penning T. M. , Burczynski M. E. , Jez J. M. , Hung C.-F. , Lin H.-K. , Ma H. , Moore M. , Palackal N. , Ratnam K. . ( 2000; ). Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. . Biochem J 351:, 67–77. [CrossRef] [PubMed]
    [Google Scholar]
  31. Penning T. M. , Jin Y. , Steckelbroeck S. , Lanisnik Rizner T. , Lewis M. . ( 2004; ). Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins. . Mol Cell Endocrinol 215:, 63–72. [CrossRef] [PubMed]
    [Google Scholar]
  32. Peralta-Zaragoza O. , Bermúdez-Morales V. , Gutiérrez-Xicotencatl L. , Alcocer-González J. , Recillas-Targa F. , Madrid-Marina V. . ( 2006; ). E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human transforming growth factor β1 promoter throughout Sp1 recognition sequence. . Viral Immunol 19:, 468–480. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pim D. , Banks L. . ( 1999; ). HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. . Oncogene 18:, 7403–7408. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pim D. , Massimi P. , Banks L. . ( 1997; ). Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. . Oncogene 15:, 257–264. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pim D. , Tomaic V. , Banks L. . ( 2009; ). The human papillomavirus (HPV) E6* proteins from high-risk, mucosal HPVs can direct degradation of cellular proteins in the absence of full-length E6 protein. . J Virol 83:, 9863–9874. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rampias T. , Sasaki C. , Weinberger P. , Psyrri A. . ( 2009; ). E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. . J Natl Cancer Inst 101:, 412–423. [CrossRef] [PubMed]
    [Google Scholar]
  37. Rižner T. L. , Šmuc T. , Rupreht R. , Šinkovec J. , Penning T. M. . ( 2006; ). AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. . Mol Cell Endocrinol 248:, 126–135. [CrossRef] [PubMed]
    [Google Scholar]
  38. Schmittgen T. D. , Livak K. J. . ( 2008; ). Analyzing real-time PCR data by the comparative C T method. . Nat Protoc 3:, 1101–1108. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sedman S. A. , Barbosa M. S. , Vass W. C. , Hubbert N. L. , Haas J. A. , Lowy D. R. , Schiller J. T. . ( 1991; ). The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. . J Virol 65:, 4860–4866.[PubMed]
    [Google Scholar]
  40. Selga E. , Noé V. , Ciudad C. J. . ( 2008; ). Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis. . Biochem Pharmacol 75:, 414–426. [CrossRef] [PubMed]
    [Google Scholar]
  41. Shally M. , Alloul N. , Jackman A. , Muller M. , Gissmann L. , Sherman L. . ( 1996; ). The E6 variant proteins E6I–E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. . Virus Res 42:, 81–96. [CrossRef] [PubMed]
    [Google Scholar]
  42. Shirasawa H. , Jin M. H. , Shimizu K. , Akutsu N. , Shino Y. , Simizu B. . ( 1994; ). Transcription-modulatory activity of full-length E6 and E6*I proteins of human papillomavirus type 16. . Virology 203:, 36–42. [CrossRef] [PubMed]
    [Google Scholar]
  43. Šmuc T. , Rizner T. L. . ( 2009; ). Expression of 17β-hydroxysteroid dehydrogenases and other estrogen-metabolizing enzymes in different cancer cell lines. . Chem Biol Interact 178:, 228–233. [CrossRef] [PubMed]
    [Google Scholar]
  44. Stacey S. N. , Jordan D. , Snijders P. J. , Mackett M. , Walboomers J. M. , Arrand J. R. . ( 1995; ). Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. . J Virol 69:, 7023–7031.[PubMed]
    [Google Scholar]
  45. Storrs C. H. , Silverstein S. J. . ( 2007; ). PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. . J Virol 81:, 4080–4090. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tao M. , Kruhlak M. , Xia S. , Androphy E. , Zheng Z. M. . ( 2003; ). Signals that dictate nuclear localization of human papillomavirus type 16 oncoprotein E6 in living cells. . J Virol 77:, 13232–13247. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tungteakkhun S. S. , Filippova M. , Fodor N. , Duerksen-Hughes P. J. . ( 2010; ). The full-length isoform of human papillomavirus 16 E6 and its splice variant E6* bind to different sites on the procaspase 8 death effector domain. . J Virol 84:, 1453–1463. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ueda M. , Hung Y.-C. , Chen J.-T. , Chiou S.-H. , Huang H.-H. , Lin T.-Y. , Terai Y. , Chow K.-C. . ( 2006; ). Infection of human papillomavirus and overexpression of dihydrodiol dehydrogenase in uterine cervical cancer. . Gynecol Oncol 102:, 173–181. [CrossRef] [PubMed]
    [Google Scholar]
  49. Vaeteewoottacharn K. , Chamutpong S. , Ponglikitmongkol M. , Angeletti P. C. . ( 2005; ). Differential localization of HPV16 E6 splice products with E6-associated protein. . Virol J 2:, 50. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wang J. , Shou J. , Chen X. . ( 2000; ). Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. . Oncogene 19:, 1843–1848. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wang H.-W. , Lin C.-P. , Chiu J. -H. , Chow K.-C. , Kuo K.-T. , Lin C.-S. , Wang L.-S. . ( 2007; ). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. . Int J Cancer 120:, 2019–2027. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zupanska A. , Kaminska B. . ( 2002; ). The diversity of p53 mutations among human brain tumors and their functional consequences. . Neurochem Int 40:, 637–645. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038265-0
Loading
/content/journal/jgv/10.1099/vir.0.038265-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error