1887

Abstract

The endodomain of several coronavirus (CoV) spike (S) proteins contains palmitylated cysteine residues and enables co-localization and interaction with the CoV membrane (M) protein. Depalmitylation of mouse hepatitis virus S proteins abolished this interaction, resulting in the failure of S incorporation into virions. In contrast, an immunofluorescence assay (IFA) showed that depalmitylated severe acute respiratory syndrome coronavirus (SCoV) S proteins still co-localized with the M protein in the budding site. Here, we determined the ability of depalmitylated SCoV S mutants to incorporate S into virus-like particles (VLPs). IFA confirmed that all SCoV S mutants co-localized with the M protein intracellularly. However, the mutants lacking two cysteine residues (C) failed to incorporate S into VLPs. This indicated that these palmitylated cysteines are essential for S incorporation, but are not involved in S co-localization mediated by the M protein. Our findings suggest that M–S co-localization and S incorporation occur independently of one another in SCoV virion assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038091-0
2012-04-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/823.html?itemId=/content/journal/jgv/10.1099/vir.0.038091-0&mimeType=html&fmt=ahah

References

  1. Bos E. C., Heijnen L., Luytjes W., Spaan W. J.. 1995; Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology214:453–463 [CrossRef][PubMed]
    [Google Scholar]
  2. Bosch B. J., de Haan C. A., Smits S. L., Rottier P. J.. 2005; Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology334:306–318 [CrossRef][PubMed]
    [Google Scholar]
  3. Chang K. W., Sheng Y., Gombold J. L.. 2000; Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology269:212–224 [CrossRef][PubMed]
    [Google Scholar]
  4. Corse E., Machamer C. E.. 2000; Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol74:4319–4326 [CrossRef][PubMed]
    [Google Scholar]
  5. Corse E., Machamer C. E.. 2002; The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol76:1273–1284 [CrossRef][PubMed]
    [Google Scholar]
  6. de Haan C. A., Smeets M., Vernooij F., Vennema H., Rottier P. J.. 1999; Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol73:7441–7452[PubMed]
    [Google Scholar]
  7. de Haan C. A., Vennema H., Rottier P. J.. 2000; Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol74:4967–4978 [CrossRef][PubMed]
    [Google Scholar]
  8. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L..other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med348:1967–1976 [CrossRef][PubMed]
    [Google Scholar]
  9. Dveksler G. S., Pensiero M. N., Dieffenbach C. W., Cardellichio C. B., Basile A. A., Elia P. E., Holmes K. V.. 1993; Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A90:1716–1720 [CrossRef][PubMed]
    [Google Scholar]
  10. Fouchier R. A., Kuiken T., Schutten M., van Amerongen G., van Doornum G. J., van den Hoogen B. G., Peiris M., Lim W., Stöhr K., Osterhaus A. D.. 2003; Aetiology: Koch’s postulates fulfilled for SARS virus. Nature423:240 [CrossRef][PubMed]
    [Google Scholar]
  11. Haijema B. J., Volders H., Rottier P. J.. 2003; Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol77:4528–4538 [CrossRef][PubMed]
    [Google Scholar]
  12. Horton M. R., Pease L. R.. 1991; Recombination and mutagenesis of DNA-sequences using PCR. In Directed Mutagenesis: a Practical Approach pp.217–247 Edited by McPherson M. J.. Oxford: Oxford University Press;
    [Google Scholar]
  13. Huang Y., Yang Z. Y., Kong W. P., Nabel G. J.. 2004; Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J Virol78:12557–12565 [CrossRef][PubMed]
    [Google Scholar]
  14. Huang C., Narayanan K., Ito N., Peters C. J., Makino S.. 2006; Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. J Virol80:210–217 [CrossRef][PubMed]
    [Google Scholar]
  15. Kawase M., Shirato K., Matsuyama S., Taguchi F.. 2009; Protease-mediated entry via the endosome of human coronavirus 229E. J Virol83:712–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Klumperman J., Locker J. K., Meijer A., Horzinek M. C., Geuze H. J., Rottier P. J.. 1994; Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol68:6523–6534[PubMed]
    [Google Scholar]
  17. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A..other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med348:1953–1966 [CrossRef][PubMed]
    [Google Scholar]
  18. Kuo L., Masters P. S.. 2002; Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol76:4987–4999 [CrossRef][PubMed]
    [Google Scholar]
  19. Li F., Li W., Farzan M., Harrison S. C.. 2005; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science309:1864–1868 [CrossRef][PubMed]
    [Google Scholar]
  20. Lontok E., Corse E., Machamer C. E.. 2004; Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol78:5913–5922 [CrossRef][PubMed]
    [Google Scholar]
  21. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F.. 2005; Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A102:12543–12547 [CrossRef][PubMed]
    [Google Scholar]
  22. McBride C. E., Machamer C. E.. 2010a; Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell–cell fusion but not interaction with M protein. Virology405:139–148 [CrossRef][PubMed]
    [Google Scholar]
  23. McBride C. E., Machamer C. E.. 2010b; A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein. J Virol84:1891–1901 [CrossRef][PubMed]
    [Google Scholar]
  24. McBride C. E., Li J., Machamer C. E.. 2007; The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol81:2418–2428 [CrossRef][PubMed]
    [Google Scholar]
  25. Narayanan K., Makino S.. 2001; Characterization of nucleocapsid–M protein interaction in murine coronavirus. Adv Exp Med Biol494:577–582 [CrossRef][PubMed]
    [Google Scholar]
  26. Nguyen V. P., Hogue B. G.. 1997; Protein interactions during coronavirus assembly. J Virol71:9278–9284[PubMed]
    [Google Scholar]
  27. Ohnishi K., Sakaguchi M., Kaji T., Akagawa K., Taniyama T., Kasai M., Tsunetsugu-Yokota Y., Oshima M., Yamamoto K..other authors 2005; Immunological detection of severe acute respiratory syndrome coronavirus by monoclonal antibodies. Jpn J Infect Dis58:88–94[PubMed]
    [Google Scholar]
  28. Opstelten D. J., Raamsman M. J., Wolfs K., Horzinek M. C., Rottier P. J.. 1995; Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol131:339–349 [CrossRef][PubMed]
    [Google Scholar]
  29. Petit C. M., Chouljenko V. N., Iyer A., Colgrove R., Farzan M., Knipe D. M., Kousoulas K. G.. 2007; Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology360:264–274 [CrossRef][PubMed]
    [Google Scholar]
  30. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Peñaranda S., Bankamp B., Maher K..other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science300:1394–1399 [CrossRef][PubMed]
    [Google Scholar]
  31. Schwegmann-Wessels C., Al-Falah M., Escors D., Wang Z., Zimmer G., Deng H., Enjuanes L., Naim H. Y., Herrler G.. 2004; A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus. J Biol Chem279:43661–43666 [CrossRef][PubMed]
    [Google Scholar]
  32. Shirato K., Maejima M., Hirai A., Ami Y., Takeyama N., Tsuchiya K., Kusanagi K., Nunoya T., Taguchi F.. 2010; Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice. Arch Virol155:1989–1995 [CrossRef][PubMed]
    [Google Scholar]
  33. Shirato K., Maejima M., Matsuyama S., Ujike M., Miyazaki A., Takeyama N., Ikeda H., Taguchi F.. 2011; Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity. Virus Res161:188–193 [CrossRef][PubMed]
    [Google Scholar]
  34. Shulla A., Gallagher T.. 2009; Role of spike protein endodomains in regulating coronavirus entry. J Biol Chem284:32725–32734 [CrossRef][PubMed]
    [Google Scholar]
  35. Siu Y. L., Teoh K. T., Lo J., Chan C. M., Kien F., Escriou N., Tsao S. W., Nicholls J. M., Altmeyer R..other authors 2008; The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol82:11318–11330 [CrossRef][PubMed]
    [Google Scholar]
  36. Thorp E. B., Boscarino J. A., Logan H. L., Goletz J. T., Gallagher T. M.. 2006; Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity. J Virol80:1280–1289 [CrossRef][PubMed]
    [Google Scholar]
  37. Ujike M., Nishikawa H., Otaka A., Yamamoto N., Yamamoto N., Matsuoka M., Kodama E., Fujii N., Taguchi F.. 2008; Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. J Virol82:588–592 [CrossRef][PubMed]
    [Google Scholar]
  38. Vennema H., Godeke G. J., Rossen J. W., Voorhout W. F., Horzinek M. C., Opstelten D. J., Rottier P. J.. 1996; Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J15:2020–2028[PubMed]
    [Google Scholar]
  39. Winter C., Schwegmann-Wessels C., Neumann U., Herrler G.. 2008; The spike protein of infectious bronchitis virus is retained intracellularly by a tyrosine motif. J Virol82:2765–2771 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038091-0
Loading
/content/journal/jgv/10.1099/vir.0.038091-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error