1887

Abstract

The endodomain of several coronavirus (CoV) spike (S) proteins contains palmitylated cysteine residues and enables co-localization and interaction with the CoV membrane (M) protein. Depalmitylation of mouse hepatitis virus S proteins abolished this interaction, resulting in the failure of S incorporation into virions. In contrast, an immunofluorescence assay (IFA) showed that depalmitylated severe acute respiratory syndrome coronavirus (SCoV) S proteins still co-localized with the M protein in the budding site. Here, we determined the ability of depalmitylated SCoV S mutants to incorporate S into virus-like particles (VLPs). IFA confirmed that all SCoV S mutants co-localized with the M protein intracellularly. However, the mutants lacking two cysteine residues (C) failed to incorporate S into VLPs. This indicated that these palmitylated cysteines are essential for S incorporation, but are not involved in S co-localization mediated by the M protein. Our findings suggest that M–S co-localization and S incorporation occur independently of one another in SCoV virion assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038091-0
2012-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/823.html?itemId=/content/journal/jgv/10.1099/vir.0.038091-0&mimeType=html&fmt=ahah

References

  1. Bos E. C., Heijnen L., Luytjes W., Spaan W. J.. ( 1995;). Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. . Virology 214:, 453–463. [CrossRef][PubMed]
    [Google Scholar]
  2. Bosch B. J., de Haan C. A., Smits S. L., Rottier P. J.. ( 2005;). Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. . Virology 334:, 306–318. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang K. W., Sheng Y., Gombold J. L.. ( 2000;). Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. . Virology 269:, 212–224. [CrossRef][PubMed]
    [Google Scholar]
  4. Corse E., Machamer C. E.. ( 2000;). Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. . J Virol 74:, 4319–4326. [CrossRef][PubMed]
    [Google Scholar]
  5. Corse E., Machamer C. E.. ( 2002;). The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. . J Virol 76:, 1273–1284. [CrossRef][PubMed]
    [Google Scholar]
  6. de Haan C. A., Smeets M., Vernooij F., Vennema H., Rottier P. J.. ( 1999;). Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. . J Virol 73:, 7441–7452.[PubMed]
    [Google Scholar]
  7. de Haan C. A., Vennema H., Rottier P. J.. ( 2000;). Assembly of the coronavirus envelope: homotypic interactions between the M proteins. . J Virol 74:, 4967–4978. [CrossRef][PubMed]
    [Google Scholar]
  8. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L.. & other authors ( 2003;). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. . N Engl J Med 348:, 1967–1976. [CrossRef][PubMed]
    [Google Scholar]
  9. Dveksler G. S., Pensiero M. N., Dieffenbach C. W., Cardellichio C. B., Basile A. A., Elia P. E., Holmes K. V.. ( 1993;). Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. . Proc Natl Acad Sci U S A 90:, 1716–1720. [CrossRef][PubMed]
    [Google Scholar]
  10. Fouchier R. A., Kuiken T., Schutten M., van Amerongen G., van Doornum G. J., van den Hoogen B. G., Peiris M., Lim W., Stöhr K., Osterhaus A. D.. ( 2003;). Aetiology: Koch’s postulates fulfilled for SARS virus. . Nature 423:, 240. [CrossRef][PubMed]
    [Google Scholar]
  11. Haijema B. J., Volders H., Rottier P. J.. ( 2003;). Switching species tropism: an effective way to manipulate the feline coronavirus genome. . J Virol 77:, 4528–4538. [CrossRef][PubMed]
    [Google Scholar]
  12. Horton M. R., Pease L. R.. ( 1991;). Recombination and mutagenesis of DNA-sequences using PCR. . In Directed Mutagenesis: a Practical Approach, pp. 217–247. Edited by McPherson M. J... Oxford:: Oxford University Press;.
    [Google Scholar]
  13. Huang Y., Yang Z. Y., Kong W. P., Nabel G. J.. ( 2004;). Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. . J Virol 78:, 12557–12565. [CrossRef][PubMed]
    [Google Scholar]
  14. Huang C., Narayanan K., Ito N., Peters C. J., Makino S.. ( 2006;). Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. . J Virol 80:, 210–217. [CrossRef][PubMed]
    [Google Scholar]
  15. Kawase M., Shirato K., Matsuyama S., Taguchi F.. ( 2009;). Protease-mediated entry via the endosome of human coronavirus 229E. . J Virol 83:, 712–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Klumperman J., Locker J. K., Meijer A., Horzinek M. C., Geuze H. J., Rottier P. J.. ( 1994;). Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. . J Virol 68:, 6523–6534.[PubMed]
    [Google Scholar]
  17. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A.. & other authors ( 2003;). A novel coronavirus associated with severe acute respiratory syndrome. . N Engl J Med 348:, 1953–1966. [CrossRef][PubMed]
    [Google Scholar]
  18. Kuo L., Masters P. S.. ( 2002;). Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. . J Virol 76:, 4987–4999. [CrossRef][PubMed]
    [Google Scholar]
  19. Li F., Li W., Farzan M., Harrison S. C.. ( 2005;). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. . Science 309:, 1864–1868. [CrossRef][PubMed]
    [Google Scholar]
  20. Lontok E., Corse E., Machamer C. E.. ( 2004;). Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. . J Virol 78:, 5913–5922. [CrossRef][PubMed]
    [Google Scholar]
  21. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F.. ( 2005;). Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. . Proc Natl Acad Sci U S A 102:, 12543–12547. [CrossRef][PubMed]
    [Google Scholar]
  22. McBride C. E., Machamer C. E.. ( 2010a;). Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell–cell fusion but not interaction with M protein. . Virology 405:, 139–148. [CrossRef][PubMed]
    [Google Scholar]
  23. McBride C. E., Machamer C. E.. ( 2010b;). A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein. . J Virol 84:, 1891–1901. [CrossRef][PubMed]
    [Google Scholar]
  24. McBride C. E., Li J., Machamer C. E.. ( 2007;). The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. . J Virol 81:, 2418–2428. [CrossRef][PubMed]
    [Google Scholar]
  25. Narayanan K., Makino S.. ( 2001;). Characterization of nucleocapsid–M protein interaction in murine coronavirus. . Adv Exp Med Biol 494:, 577–582. [CrossRef][PubMed]
    [Google Scholar]
  26. Nguyen V. P., Hogue B. G.. ( 1997;). Protein interactions during coronavirus assembly. . J Virol 71:, 9278–9284.[PubMed]
    [Google Scholar]
  27. Ohnishi K., Sakaguchi M., Kaji T., Akagawa K., Taniyama T., Kasai M., Tsunetsugu-Yokota Y., Oshima M., Yamamoto K.. & other authors ( 2005;). Immunological detection of severe acute respiratory syndrome coronavirus by monoclonal antibodies. . Jpn J Infect Dis 58:, 88–94.[PubMed]
    [Google Scholar]
  28. Opstelten D. J., Raamsman M. J., Wolfs K., Horzinek M. C., Rottier P. J.. ( 1995;). Envelope glycoprotein interactions in coronavirus assembly. . J Cell Biol 131:, 339–349. [CrossRef][PubMed]
    [Google Scholar]
  29. Petit C. M., Chouljenko V. N., Iyer A., Colgrove R., Farzan M., Knipe D. M., Kousoulas K. G.. ( 2007;). Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. . Virology 360:, 264–274. [CrossRef][PubMed]
    [Google Scholar]
  30. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Peñaranda S., Bankamp B., Maher K.. & other authors ( 2003;). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. . Science 300:, 1394–1399. [CrossRef][PubMed]
    [Google Scholar]
  31. Schwegmann-Wessels C., Al-Falah M., Escors D., Wang Z., Zimmer G., Deng H., Enjuanes L., Naim H. Y., Herrler G.. ( 2004;). A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus. . J Biol Chem 279:, 43661–43666. [CrossRef][PubMed]
    [Google Scholar]
  32. Shirato K., Maejima M., Hirai A., Ami Y., Takeyama N., Tsuchiya K., Kusanagi K., Nunoya T., Taguchi F.. ( 2010;). Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice. . Arch Virol 155:, 1989–1995. [CrossRef][PubMed]
    [Google Scholar]
  33. Shirato K., Maejima M., Matsuyama S., Ujike M., Miyazaki A., Takeyama N., Ikeda H., Taguchi F.. ( 2011;). Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity. . Virus Res 161:, 188–193. [CrossRef][PubMed]
    [Google Scholar]
  34. Shulla A., Gallagher T.. ( 2009;). Role of spike protein endodomains in regulating coronavirus entry. . J Biol Chem 284:, 32725–32734. [CrossRef][PubMed]
    [Google Scholar]
  35. Siu Y. L., Teoh K. T., Lo J., Chan C. M., Kien F., Escriou N., Tsao S. W., Nicholls J. M., Altmeyer R.. & other authors ( 2008;). The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. . J Virol 82:, 11318–11330. [CrossRef][PubMed]
    [Google Scholar]
  36. Thorp E. B., Boscarino J. A., Logan H. L., Goletz J. T., Gallagher T. M.. ( 2006;). Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity. . J Virol 80:, 1280–1289. [CrossRef][PubMed]
    [Google Scholar]
  37. Ujike M., Nishikawa H., Otaka A., Yamamoto N., Yamamoto N., Matsuoka M., Kodama E., Fujii N., Taguchi F.. ( 2008;). Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. . J Virol 82:, 588–592. [CrossRef][PubMed]
    [Google Scholar]
  38. Vennema H., Godeke G. J., Rossen J. W., Voorhout W. F., Horzinek M. C., Opstelten D. J., Rottier P. J.. ( 1996;). Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. . EMBO J 15:, 2020–2028.[PubMed]
    [Google Scholar]
  39. Winter C., Schwegmann-Wessels C., Neumann U., Herrler G.. ( 2008;). The spike protein of infectious bronchitis virus is retained intracellularly by a tyrosine motif. . J Virol 82:, 2765–2771. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038091-0
Loading
/content/journal/jgv/10.1099/vir.0.038091-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error