1887

Abstract

The antiretroviral factor tripartite motif protein 5 () gene-derived isoform (TRIMCyp) has been found in at least three species of Old World monkey: rhesus (), pig-tailed () and cynomolgus () macaques. Although the frequency of TRIMCyp has been well studied in rhesus and pig-tailed macaques, the frequency and prevalence of TRIMCyp in cynomolgus macaques remain to be definitively elucidated. Here, the geographical and genetic diversity of TRIM5α/TRIMCyp in cynomolgus macaques was studied in comparison with their anti-lentiviral activity. It was found that the frequency of TRIMCyp in a population in the Philippines was significantly higher than those in Indonesian and Malaysian populations. Major and minor haplotypes of cynomolgus macaque TRIMCyp with single nucleotide polymorphisms in the cyclophilin A domain were also found. The functional significance of the polymorphism in TRIMCyp was examined, and it was demonstrated that the major haplotype of TRIMCyp suppressed human immunodeficiency virus type 1 (HIV-1) but not HIV-2, whilst the minor haplotype of TRIMCyp suppressed HIV-2 but not HIV-1. The major haplotype of TRIMCyp did not restrict a monkey-tropic HIV-1 clone, NL-DT5R, which contains a capsid with the simian immunodeficiency virus-derived loop between α-helices 4 and 5 and the entire gene. These results indicate that polymorphisms of TRIMCyp affect its anti-lentiviral activity. Overall, the results of this study will help our understanding of the genetic background of cynomolgus macaque TRIMCyp, as well as the host factors composing species barriers of primate lentiviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038075-0
2012-03-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/3/594.html?itemId=/content/journal/jgv/10.1099/vir.0.038075-0&mimeType=html&fmt=ahah

References

  1. Abegg C., Thierry B.. ( 2002;). Macaque evolution and dispersal in insular south-east Asia. . Biol J Linn Soc Lond 75:, 555–576. [CrossRef]
    [Google Scholar]
  2. Agy M. B., Frumkin L. R., Corey L., Coombs R. W., Wolinsky S. M., Koehler J., Morton W. R., Katze M. G.. ( 1992;). Infection of Macaca nemestrina by human immunodeficiency virus type-1. . Science 257:, 103–106. [CrossRef][PubMed]
    [Google Scholar]
  3. Blancher A., Bonhomme M., Crouau-Roy B., Terao K., Kitano T., Saitou N.. ( 2008;). Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis). . J Hered 99:, 254–264. [CrossRef][PubMed]
    [Google Scholar]
  4. Brennan G., Kozyrev Y., Hu S.-L.. ( 2008;). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. . Proc Natl Acad Sci U S A 105:, 3569–3574. [CrossRef][PubMed]
    [Google Scholar]
  5. Dietrich E. A., Brennan G., Ferguson B., Wiseman R. W., O’Connor D., Hu S.-L.. ( 2011;). Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis. . J Virol 85:, 9956–9963. [CrossRef][PubMed]
    [Google Scholar]
  6. Franke E. K., Yuan H. E., Luban J.. ( 1994;). Specific incorporation of cyclophilin A into HIV-1 virions. . Nature 372:, 359–362. [CrossRef][PubMed]
    [Google Scholar]
  7. Honjo S.. ( 1985;). The Japanese Tsukuba Primate Center for Medical Science (TPC): an outline. . J Med Primatol 14:, 75–89.[PubMed]
    [Google Scholar]
  8. Johnson W. E., Sawyer S. L.. ( 2009;). Molecular evolution of the antiretroviral TRIM5 gene. . Immunogenetics 61:, 163–176. [CrossRef][PubMed]
    [Google Scholar]
  9. Kamada K., Igarashi T., Martin M. A., Khamsri B., Hatcho K., Yamashita T., Fujita M., Uchiyama T., Adachi A.. ( 2006;). Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. . Proc Natl Acad Sci U S A 103:, 16959–16964. [CrossRef][PubMed]
    [Google Scholar]
  10. Kirmaier A., Wu F., Newman R. M., Hall L. R., Morgan J. S., O’Connor S., Marx P. A., Meythaler M., Goldstein S.. & other authors ( 2010;). TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. . PLoS Biol 8:, e1000462. [CrossRef][PubMed]
    [Google Scholar]
  11. Kita Y. F., Hosomichi K., Kohara S., Itoh Y., Ogasawara K., Tsuchiya H., Torii R., Inoko H., Blancher A.. & other authors ( 2009;). MHC class I A loci polymorphism and diversity in three Southeast Asian populations of cynomolgus macaque. . Immunogenetics 61:, 635–648. [CrossRef][PubMed]
    [Google Scholar]
  12. Kono K., Song H., Shingai Y., Shioda T., Nakayama E. E.. ( 2008;). Comparison of anti-viral activity of rhesus monkey and cynomolgus monkey TRIM5αs against human immunodeficiency virus type 2 infection. . Virology 373:, 447–456. [CrossRef][PubMed]
    [Google Scholar]
  13. Liao C.-H., Kuang Y.-Q., Liu H.-L., Zheng Y.-T., Su B.. ( 2007;). A novel fusion gene, TRIM5–Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. . AIDS 21: (Suppl. 8), S19–S26. [CrossRef][PubMed]
    [Google Scholar]
  14. Lim S.-Y., Rogers T., Chan T., Whitney J. B., Kim J., Sodroski J., Letvin N. L.. ( 2010;). TRIM5α modulates immunodeficiency virus control in rhesus monkeys. . PLoS Pathog 6:, e1000738. [CrossRef][PubMed]
    [Google Scholar]
  15. Nakayama E. E., Shioda T.. ( 2010;). Anti-retroviral activity of TRIM5α. . Rev Med Virol 20:, 77–92. [CrossRef][PubMed]
    [Google Scholar]
  16. Nakayama E. E., Miyoshi H., Nagai Y., Shioda T.. ( 2005;). A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5α determines species-specific restriction of simian immunodeficiency virus SIVmac infection. . J Virol 79:, 8870–8877. [CrossRef][PubMed]
    [Google Scholar]
  17. Newman R. M., Hall L., Connole M., Chen G.-L., Sato S., Yuste E., Diehl W., Hunter E., Kaur A.. & other authors ( 2006;). Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α. . Proc Natl Acad Sci U S A 103:, 19134–19139. [CrossRef][PubMed]
    [Google Scholar]
  18. Newman R. M., Hall L., Kirmaier A., Pozzi L. A., Pery E., Farzan M., O’Neil S. P., Johnson W.. ( 2008;). Evolution of a TRIM5-CypA splice isoform in Old World monkeys. . PLoS Pathog 4:, e1000003. [CrossRef][PubMed]
    [Google Scholar]
  19. Nomaguchi M., Doi N., Kamada K., Adachi A.. ( 2008;). Species barrier of HIV-1 and its jumping by virus engineering. . Rev Med Virol 18:, 261–275. [CrossRef][PubMed]
    [Google Scholar]
  20. Price A. J., Marzetta F., Lammers M., Ylinen L. M., Schaller T., Wilson S. J., Towers G. J., James L. C.. ( 2009;). Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. . Nat Struct Mol Biol 16:, 1036–1042. [CrossRef][PubMed]
    [Google Scholar]
  21. Reynolds M. R., Sacha J. B., Weiler A. M., Borchardt G. J., Glidden C. E., Sheppard N. C., Norante F. A., Castrovinci P. A., Harris J. J.. & other authors ( 2011;). The TRIM5α genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge. . J Virol 85:, 9637–9640. [CrossRef][PubMed]
    [Google Scholar]
  22. Saito A., Nomaguchi M., Iijima S., Kuroishi A., Yoshida T., Lee Y.-J., Hayakawa T., Kono K., Nakayama E. E.. & other authors ( 2011;). Improved capacity of a monkey-tropic HIV-1 derivative to replicate in cynomolgus monkeys with minimal modifications. . Microbes Infect 13:, 58–64. [CrossRef][PubMed]
    [Google Scholar]
  23. Sauter D., Specht A., Kirchhoff F.. ( 2010;). Tetherin: holding on and letting go. . Cell 141:, 392–398. [CrossRef][PubMed]
    [Google Scholar]
  24. Song H., Nakayama E. E., Yokoyama M., Sato H., Levy J. A., Shioda T.. ( 2007;). A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5αs. . J Virol 81:, 7280–7285. [CrossRef][PubMed]
    [Google Scholar]
  25. Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J.. ( 2004;). The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. . Nature 427:, 848–853. [CrossRef][PubMed]
    [Google Scholar]
  26. Wilson S. J., Webb B. L., Ylinen L. M., Verschoor E., Heeney J. L., Towers G. J.. ( 2008a;). Independent evolution of an antiviral TRIMCyp in rhesus macaques. . Proc Natl Acad Sci U S A 105:, 3557–3562. [CrossRef][PubMed]
    [Google Scholar]
  27. Wilson S. J., Webb B. L., Maplanka C., Newman R. M., Verschoor E. J., Heeney J. L., Towers G. J.. ( 2008b;). Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. . J Virol 82:, 7243–7247. [CrossRef][PubMed]
    [Google Scholar]
  28. Yap M. W., Nisole S., Lynch C., Stoye J. P.. ( 2004;). Trim5α protein restricts both HIV-1 and murine leukemia virus. . Proc Natl Acad Sci U S A 101:, 10786–10791. [CrossRef][PubMed]
    [Google Scholar]
  29. Ylinen L. M., Price A. J., Rasaiyaah J., Hué S., Rose N. J., Marzetta F., James L. C., Towers G. J.. ( 2010;). Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. . PLoS Pathog 6:, e1001062. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038075-0
Loading
/content/journal/jgv/10.1099/vir.0.038075-0
Loading

Data & Media loading...

Supplements

Supplementary tables 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error