1887

Abstract

The antiretroviral factor tripartite motif protein 5 () gene-derived isoform (TRIMCyp) has been found in at least three species of Old World monkey: rhesus (), pig-tailed () and cynomolgus () macaques. Although the frequency of TRIMCyp has been well studied in rhesus and pig-tailed macaques, the frequency and prevalence of TRIMCyp in cynomolgus macaques remain to be definitively elucidated. Here, the geographical and genetic diversity of TRIM5α/TRIMCyp in cynomolgus macaques was studied in comparison with their anti-lentiviral activity. It was found that the frequency of TRIMCyp in a population in the Philippines was significantly higher than those in Indonesian and Malaysian populations. Major and minor haplotypes of cynomolgus macaque TRIMCyp with single nucleotide polymorphisms in the cyclophilin A domain were also found. The functional significance of the polymorphism in TRIMCyp was examined, and it was demonstrated that the major haplotype of TRIMCyp suppressed human immunodeficiency virus type 1 (HIV-1) but not HIV-2, whilst the minor haplotype of TRIMCyp suppressed HIV-2 but not HIV-1. The major haplotype of TRIMCyp did not restrict a monkey-tropic HIV-1 clone, NL-DT5R, which contains a capsid with the simian immunodeficiency virus-derived loop between α-helices 4 and 5 and the entire gene. These results indicate that polymorphisms of TRIMCyp affect its anti-lentiviral activity. Overall, the results of this study will help our understanding of the genetic background of cynomolgus macaque TRIMCyp, as well as the host factors composing species barriers of primate lentiviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038075-0
2012-03-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/3/594.html?itemId=/content/journal/jgv/10.1099/vir.0.038075-0&mimeType=html&fmt=ahah

References

  1. Abegg C., Thierry B. 2002; Macaque evolution and dispersal in insular south-east Asia. Biol J Linn Soc Lond 75:555–576 [View Article]
    [Google Scholar]
  2. Agy M. B., Frumkin L. R., Corey L., Coombs R. W., Wolinsky S. M., Koehler J., Morton W. R., Katze M. G. 1992; Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science 257:103–106 [View Article][PubMed]
    [Google Scholar]
  3. Blancher A., Bonhomme M., Crouau-Roy B., Terao K., Kitano T., Saitou N. 2008; Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis). J Hered 99:254–264 [View Article][PubMed]
    [Google Scholar]
  4. Brennan G., Kozyrev Y., Hu S.-L. 2008; TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci U S A 105:3569–3574 [View Article][PubMed]
    [Google Scholar]
  5. Dietrich E. A., Brennan G., Ferguson B., Wiseman R. W., O’Connor D., Hu S.-L. 2011; Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis. J Virol 85:9956–9963 [View Article][PubMed]
    [Google Scholar]
  6. Franke E. K., Yuan H. E., Luban J. 1994; Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372:359–362 [View Article][PubMed]
    [Google Scholar]
  7. Honjo S. 1985; The Japanese Tsukuba Primate Center for Medical Science (TPC): an outline. J Med Primatol 14:75–89[PubMed]
    [Google Scholar]
  8. Johnson W. E., Sawyer S. L. 2009; Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics 61:163–176 [View Article][PubMed]
    [Google Scholar]
  9. Kamada K., Igarashi T., Martin M. A., Khamsri B., Hatcho K., Yamashita T., Fujita M., Uchiyama T., Adachi A. 2006; Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc Natl Acad Sci U S A 103:16959–16964 [View Article][PubMed]
    [Google Scholar]
  10. Kirmaier A., Wu F., Newman R. M., Hall L. R., Morgan J. S., O’Connor S., Marx P. A., Meythaler M., Goldstein S.other authors 2010; TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. PLoS Biol 8:e1000462 [View Article][PubMed]
    [Google Scholar]
  11. Kita Y. F., Hosomichi K., Kohara S., Itoh Y., Ogasawara K., Tsuchiya H., Torii R., Inoko H., Blancher A.other authors 2009; MHC class I A loci polymorphism and diversity in three Southeast Asian populations of cynomolgus macaque. Immunogenetics 61:635–648 [View Article][PubMed]
    [Google Scholar]
  12. Kono K., Song H., Shingai Y., Shioda T., Nakayama E. E. 2008; Comparison of anti-viral activity of rhesus monkey and cynomolgus monkey TRIM5αs against human immunodeficiency virus type 2 infection. Virology 373:447–456 [View Article][PubMed]
    [Google Scholar]
  13. Liao C.-H., Kuang Y.-Q., Liu H.-L., Zheng Y.-T., Su B. 2007; A novel fusion gene, TRIM5–Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21:Suppl. 8S19–S26 [View Article][PubMed]
    [Google Scholar]
  14. Lim S.-Y., Rogers T., Chan T., Whitney J. B., Kim J., Sodroski J., Letvin N. L. 2010; TRIM5α modulates immunodeficiency virus control in rhesus monkeys. PLoS Pathog 6:e1000738 [View Article][PubMed]
    [Google Scholar]
  15. Nakayama E. E., Shioda T. 2010; Anti-retroviral activity of TRIM5α. Rev Med Virol 20:77–92 [View Article][PubMed]
    [Google Scholar]
  16. Nakayama E. E., Miyoshi H., Nagai Y., Shioda T. 2005; A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5α determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 79:8870–8877 [View Article][PubMed]
    [Google Scholar]
  17. Newman R. M., Hall L., Connole M., Chen G.-L., Sato S., Yuste E., Diehl W., Hunter E., Kaur A.other authors 2006; Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α. Proc Natl Acad Sci U S A 103:19134–19139 [View Article][PubMed]
    [Google Scholar]
  18. Newman R. M., Hall L., Kirmaier A., Pozzi L. A., Pery E., Farzan M., O’Neil S. P., Johnson W. 2008; Evolution of a TRIM5-CypA splice isoform in Old World monkeys. PLoS Pathog 4:e1000003 [View Article][PubMed]
    [Google Scholar]
  19. Nomaguchi M., Doi N., Kamada K., Adachi A. 2008; Species barrier of HIV-1 and its jumping by virus engineering. Rev Med Virol 18:261–275 [View Article][PubMed]
    [Google Scholar]
  20. Price A. J., Marzetta F., Lammers M., Ylinen L. M., Schaller T., Wilson S. J., Towers G. J., James L. C. 2009; Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16:1036–1042 [View Article][PubMed]
    [Google Scholar]
  21. Reynolds M. R., Sacha J. B., Weiler A. M., Borchardt G. J., Glidden C. E., Sheppard N. C., Norante F. A., Castrovinci P. A., Harris J. J.other authors 2011; The TRIM5α genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge. J Virol 85:9637–9640 [View Article][PubMed]
    [Google Scholar]
  22. Saito A., Nomaguchi M., Iijima S., Kuroishi A., Yoshida T., Lee Y.-J., Hayakawa T., Kono K., Nakayama E. E.other authors 2011; Improved capacity of a monkey-tropic HIV-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes Infect 13:58–64 [View Article][PubMed]
    [Google Scholar]
  23. Sauter D., Specht A., Kirchhoff F. 2010; Tetherin: holding on and letting go. Cell 141:392–398 [View Article][PubMed]
    [Google Scholar]
  24. Song H., Nakayama E. E., Yokoyama M., Sato H., Levy J. A., Shioda T. 2007; A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5αs. J Virol 81:7280–7285 [View Article][PubMed]
    [Google Scholar]
  25. Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J. 2004; The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:848–853 [View Article][PubMed]
    [Google Scholar]
  26. Wilson S. J., Webb B. L., Ylinen L. M., Verschoor E., Heeney J. L., Towers G. J. 2008a; Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci U S A 105:3557–3562 [View Article][PubMed]
    [Google Scholar]
  27. Wilson S. J., Webb B. L., Maplanka C., Newman R. M., Verschoor E. J., Heeney J. L., Towers G. J. 2008b; Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 82:7243–7247 [View Article][PubMed]
    [Google Scholar]
  28. Yap M. W., Nisole S., Lynch C., Stoye J. P. 2004; Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 101:10786–10791 [View Article][PubMed]
    [Google Scholar]
  29. Ylinen L. M., Price A. J., Rasaiyaah J., Hué S., Rose N. J., Marzetta F., James L. C., Towers G. J. 2010; Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 6:e1001062 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038075-0
Loading
/content/journal/jgv/10.1099/vir.0.038075-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error