1887

Abstract

A number of herpesviruses have now been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. Ovine herpesvirus 2 (OvHV-2) is the causative agent of sheep-associated malignant catarrhal fever, a fatal lymphoproliferative disease of cattle. Using massively parallel sequencing and Northern hybridization we have identified eight putative miRNAs encoded by OvHV-2 expressed in an OvHV-2-immortalized bovine lymphocyte cell line. These eight miRNAs are encoded in two areas of the OvHV-2 genome that contain no predicted protein coding regions and show no sequence similarity with other herpesvirus or cellular miRNAs. This represents the first report of the expression of virally encoded miRNAs in the genus of herpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.037606-0
2012-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/150.html?itemId=/content/journal/jgv/10.1099/vir.0.037606-0&mimeType=html&fmt=ahah

References

  1. Ambros V. , Bartel B. , Bartel D. P. , Burge C. B. , Carrington J. C. , Chen X. M. , Dreyfuss G. , Eddy S. R. , Griffiths-Jones S. . & other authors ( 2003; ). A uniform system for microRNA annotation. . RNA 9:, 277–279. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bartel D. P. . ( 2009; ). MicroRNAs: target recognition and regulatory functions. . Cell 136:, 215–233. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cai X. Z. , Lu S. H. , Zhang Z. H. , Gonzalez C. M. , Damania B. , Cullen B. R. . ( 2005; ). Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. . Proc Natl Acad Sci U S A 102:, 5570–5575. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cai X. Z. , Schäfer A. , Lu S. H. , Bilello J. P. , Desrosiers R. C. , Edwards R. , Raab-Traub N. , Cullen B. R. . ( 2006; ). Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. . PLoS Pathog 2:, e23. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carthew R. W. , Sontheimer E. J. . ( 2009; ). Origins and mechanisms of miRNAs and siRNAs. . Cell 136:, 642–655. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cook C. G. , Splitter G. A. . ( 1988; ). Lytic function of bovine lymphokine-activated killer cells from a normal and a malignant catarrhal fever virus-infected animal. . Vet Immunol Immunopathol 19:, 105–118. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cullen B. R. . ( 2009; ). Viral and cellular messenger RNA targets of viral microRNAs. . Nature 457:, 421–425. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dölken L. , Krmpotic A. , Kothe S. , Tuddenham L. , Tanguy M. , Marcinowski L. , Ruzsics Z. , Elefant N. , Altuvia Y. . & other authors ( 2010; ). Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. . PLoS Pathog 6:, e1001150. [CrossRef] [PubMed]
    [Google Scholar]
  9. Glazov E. A. , Horwood P. F. , Assavalapsakul W. , Kongsuwan K. , Mitchell R. W. , Mitter N. , Mahony T. J. . ( 2010; ). Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. . J Gen Virol 91:, 32–41. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gottwein E. , Cullen B. R. . ( 2010; ). A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. . J Virol 84:, 5229–5237. [CrossRef] [PubMed]
    [Google Scholar]
  11. Grey F. , Hook L. , Nelson J. . ( 2008; ). The functions of herpesvirus-encoded microRNAs. . Med Microbiol Immunol (Berl) 197:, 261–267. [CrossRef] [PubMed]
    [Google Scholar]
  12. Grundhoff A. , Sullivan C. S. , Ganem D. . ( 2006; ). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. . RNA 12:, 733–750. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hart J. , Ackermann M. , Jayawardane G. , Russell G. , Haig D. M. , Reid H. , Stewart J. P. . ( 2007; ). Complete sequence and analysis of the ovine herpesvirus 2 genome. . J Gen Virol 88:, 28–39.[CrossRef]
    [Google Scholar]
  14. Kim V. N. , Han J. , Siomi M. C. . ( 2009; ). Biogenesis of small RNAs in animals. . Nat Rev Mol Cell Biol 10:, 126–139. [CrossRef] [PubMed]
    [Google Scholar]
  15. Li R. Q. , Li Y. R. , Kristiansen K. , Wang J. . ( 2008; ). SOAP: Short Oligonucleotide Alignment Program. . Bioinformatics 24:, 713–714. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lu F. , Stedman W. , Yousef M. , Renne R. , Lieberman P. M. . ( 2010; ). Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. . J Virol 84:, 2697–2706. [CrossRef] [PubMed]
    [Google Scholar]
  17. MacHugh N. D. , Connelley T. , Graham S. P. , Pelle R. , Formisano P. T. , Taracha E. L. , Ellis S. A. , McKeever D. J. , Burrells A. , Morrison W. I. . ( 2009; ). CD8+ T-cell responses to Theileria parva are preferentially directed to a single dominant antigen: implications for parasite strain-specific immunity. . Eur J Immunol 39:, 2459–2469. [CrossRef] [PubMed]
    [Google Scholar]
  18. McGeoch D. J. , Rixon F. J. , Davison A. J. . ( 2006; ). Topics in herpesvirus genomics and evolution. . Virus Res 117:, 90–104. [CrossRef] [PubMed]
    [Google Scholar]
  19. Meier-Trummer C. S. , Rehrauer H. , Franchini M. , Patrignani A. , Wagner U. , Ackermann M. . ( 2009; ). Malignant catarrhal fever of cattle is associated with low abundance of IL-2 transcript and a predominantly latent profile of ovine herpesvirus 2 gene expression. . PLoS ONE 4:, e6265. [CrossRef]
    [Google Scholar]
  20. Nelson D. D. , Davis W. C. , Brown W. C. , Li H. , O’Toole D. , Oaks J. L. . ( 2010; ). CD8+/perforin+/WC1 γδ T cells, not CD8+ αβ T cells, infiltrate vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. . Vet Immunol Immunopathol 136:, 284–291. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pall G. S. , Hamilton A. J. . ( 2008; ). Improved northern blot method for enhanced detection of small RNA. . Nat Protoc 3:, 1077–1084. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pfeffer S. , Sewer A. , Lagos-Quintana M. , Sheridan R. , Sander C. , Grässer F. A. , van Dyk L. F. , Ho C. K. , Shuman S. . & other authors ( 2005; ). Identification of microRNAs of the herpesvirus family. . Nat Methods 2:, 269–276. [CrossRef] [PubMed]
    [Google Scholar]
  23. Qin Z. , Kearney P. , Plaisance K. , Parsons C. H. . ( 2010; ). Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. . J Leukoc Biol 87:, 25–34. [CrossRef] [PubMed]
    [Google Scholar]
  24. Reid H. W. , Buxton D. , Pow I. , Finlayson J. . ( 1989; ). Isolation and characterisation of lymphoblastoid cells from cattle and deer affected with ‘sheep-associated’ malignant catarrhal fever. . Res Vet Sci 47:, 90–96.[PubMed]
    [Google Scholar]
  25. Russell G. C. , Stewart J. P. , Haig D. M. . ( 2009; ). Malignant catarrhal fever: a review. . Vet J 179:, 324–335. [CrossRef] [PubMed]
    [Google Scholar]
  26. Samols M. A. , Skalsky R. L. , Maldonado A. M. , Riva A. , Lopez M. C. , Baker H. V. , Renne R. . ( 2007; ). Identification of cellular genes targeted by KSHV-encoded microRNAs. . PLoS Pathog 3:, e65. [CrossRef] [PubMed]
    [Google Scholar]
  27. Schäfer A. , Cai X. Z. , Bilello J. P. , Desrosiers R. C. , Cullen B. R. . ( 2007; ). Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. . Virology 364:, 21–27. [CrossRef] [PubMed]
    [Google Scholar]
  28. Schock A. , Collins R. A. , Reid H. W. . ( 1998; ). Phenotype, growth regulation and cytokine transcription in ovine herpesvirus-2 (OHV-2)-infected bovine T-cell lines. . Vet Immunol Immunopathol 66:, 67–81. [CrossRef] [PubMed]
    [Google Scholar]
  29. Seto E. , Moosmann A. , Grömminger S. , Walz N. , Grundhoff A. , Hammerschmidt W. . ( 2010; ). Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. . PLoS Pathog 6:, e1001063. [CrossRef] [PubMed]
    [Google Scholar]
  30. Walz N. , Christalla T. , Tessmer U. , Grundhoff A. . ( 2010; ). A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs. . J Virol 84:, 716–728. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yao Y. , Zhao Y. , Xu H. , Smith L. P. , Lawrie C. H. , Sewer A. , Zavolan M. , Nair V. . ( 2007; ). Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. . J Virol 81:, 7164–7170. [CrossRef] [PubMed]
    [Google Scholar]
  32. Zhao Y. G. , Yao Y. X. , Xu H. T. , Lambeth L. , Smith L. P. , Kgosana L. , Wang X. W. , Nair V. . ( 2009; ). A functional microRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. . J Virol 83:, 489–492. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.037606-0
Loading
/content/journal/jgv/10.1099/vir.0.037606-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error