1887

Abstract

A number of herpesviruses have now been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. Ovine herpesvirus 2 (OvHV-2) is the causative agent of sheep-associated malignant catarrhal fever, a fatal lymphoproliferative disease of cattle. Using massively parallel sequencing and Northern hybridization we have identified eight putative miRNAs encoded by OvHV-2 expressed in an OvHV-2-immortalized bovine lymphocyte cell line. These eight miRNAs are encoded in two areas of the OvHV-2 genome that contain no predicted protein coding regions and show no sequence similarity with other herpesvirus or cellular miRNAs. This represents the first report of the expression of virally encoded miRNAs in the genus of herpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.037606-0
2012-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/150.html?itemId=/content/journal/jgv/10.1099/vir.0.037606-0&mimeType=html&fmt=ahah

References

  1. Ambros V., Bartel B., Bartel D. P., Burge C. B., Carrington J. C., Chen X. M., Dreyfuss G., Eddy S. R., Griffiths-Jones S. other authors 2003; A uniform system for microRNA annotation. RNA 9:277–279 [View Article][PubMed]
    [Google Scholar]
  2. Bartel D. P. 2009; MicroRNAs: target recognition and regulatory functions. Cell 136:215–233 [View Article][PubMed]
    [Google Scholar]
  3. Cai X. Z., Lu S. H., Zhang Z. H., Gonzalez C. M., Damania B., Cullen B. R. 2005; Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 102:5570–5575 [View Article][PubMed]
    [Google Scholar]
  4. Cai X. Z., Schäfer A., Lu S. H., Bilello J. P., Desrosiers R. C., Edwards R., Raab-Traub N., Cullen B. R. 2006; Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23 [View Article][PubMed]
    [Google Scholar]
  5. Carthew R. W., Sontheimer E. J. 2009; Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655 [View Article][PubMed]
    [Google Scholar]
  6. Cook C. G., Splitter G. A. 1988; Lytic function of bovine lymphokine-activated killer cells from a normal and a malignant catarrhal fever virus-infected animal. Vet Immunol Immunopathol 19:105–118 [View Article][PubMed]
    [Google Scholar]
  7. Cullen B. R. 2009; Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425 [View Article][PubMed]
    [Google Scholar]
  8. Dölken L., Krmpotic A., Kothe S., Tuddenham L., Tanguy M., Marcinowski L., Ruzsics Z., Elefant N., Altuvia Y. other authors 2010; Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6:e1001150 [View Article][PubMed]
    [Google Scholar]
  9. Glazov E. A., Horwood P. F., Assavalapsakul W., Kongsuwan K., Mitchell R. W., Mitter N., Mahony T. J. 2010; Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. J Gen Virol 91:32–41 [View Article][PubMed]
    [Google Scholar]
  10. Gottwein E., Cullen B. R. 2010; A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84:5229–5237 [View Article][PubMed]
    [Google Scholar]
  11. Grey F., Hook L., Nelson J. 2008; The functions of herpesvirus-encoded microRNAs. Med Microbiol Immunol (Berl) 197:261–267 [View Article][PubMed]
    [Google Scholar]
  12. Grundhoff A., Sullivan C. S., Ganem D. 2006; A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750 [View Article][PubMed]
    [Google Scholar]
  13. Hart J., Ackermann M., Jayawardane G., Russell G., Haig D. M., Reid H., Stewart J. P. 2007; Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol 88:28–39 [CrossRef]
    [Google Scholar]
  14. Kim V. N., Han J., Siomi M. C. 2009; Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139 [View Article][PubMed]
    [Google Scholar]
  15. Li R. Q., Li Y. R., Kristiansen K., Wang J. 2008; SOAP: Short Oligonucleotide Alignment Program. Bioinformatics 24:713–714 [View Article][PubMed]
    [Google Scholar]
  16. Lu F., Stedman W., Yousef M., Renne R., Lieberman P. M. 2010; Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 84:2697–2706 [View Article][PubMed]
    [Google Scholar]
  17. MacHugh N. D., Connelley T., Graham S. P., Pelle R., Formisano P. T., Taracha E. L., Ellis S. A., McKeever D. J., Burrells A., Morrison W. I. 2009; CD8+ T-cell responses to Theileria parva are preferentially directed to a single dominant antigen: implications for parasite strain-specific immunity. Eur J Immunol 39:2459–2469 [View Article][PubMed]
    [Google Scholar]
  18. McGeoch D. J., Rixon F. J., Davison A. J. 2006; Topics in herpesvirus genomics and evolution. Virus Res 117:90–104 [View Article][PubMed]
    [Google Scholar]
  19. Meier-Trummer C. S., Rehrauer H., Franchini M., Patrignani A., Wagner U., Ackermann M. 2009; Malignant catarrhal fever of cattle is associated with low abundance of IL-2 transcript and a predominantly latent profile of ovine herpesvirus 2 gene expression. PLoS ONE 4:e6265 [View Article]
    [Google Scholar]
  20. Nelson D. D., Davis W. C., Brown W. C., Li H., O’Toole D., Oaks J. L. 2010; CD8+/perforin+/WC1 γδ T cells, not CD8+ αβ T cells, infiltrate vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. Vet Immunol Immunopathol 136:284–291 [View Article][PubMed]
    [Google Scholar]
  21. Pall G. S., Hamilton A. J. 2008; Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3:1077–1084 [View Article][PubMed]
    [Google Scholar]
  22. Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grässer F. A., van Dyk L. F., Ho C. K., Shuman S. other authors 2005; Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276 [View Article][PubMed]
    [Google Scholar]
  23. Qin Z., Kearney P., Plaisance K., Parsons C. H. 2010; Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol 87:25–34 [View Article][PubMed]
    [Google Scholar]
  24. Reid H. W., Buxton D., Pow I., Finlayson J. 1989; Isolation and characterisation of lymphoblastoid cells from cattle and deer affected with ‘sheep-associated’ malignant catarrhal fever. Res Vet Sci 47:90–96[PubMed]
    [Google Scholar]
  25. Russell G. C., Stewart J. P., Haig D. M. 2009; Malignant catarrhal fever: a review. Vet J 179:324–335 [View Article][PubMed]
    [Google Scholar]
  26. Samols M. A., Skalsky R. L., Maldonado A. M., Riva A., Lopez M. C., Baker H. V., Renne R. 2007; Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3:e65 [View Article][PubMed]
    [Google Scholar]
  27. Schäfer A., Cai X. Z., Bilello J. P., Desrosiers R. C., Cullen B. R. 2007; Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364:21–27 [View Article][PubMed]
    [Google Scholar]
  28. Schock A., Collins R. A., Reid H. W. 1998; Phenotype, growth regulation and cytokine transcription in ovine herpesvirus-2 (OHV-2)-infected bovine T-cell lines. Vet Immunol Immunopathol 66:67–81 [View Article][PubMed]
    [Google Scholar]
  29. Seto E., Moosmann A., Grömminger S., Walz N., Grundhoff A., Hammerschmidt W. 2010; Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6:e1001063 [View Article][PubMed]
    [Google Scholar]
  30. Walz N., Christalla T., Tessmer U., Grundhoff A. 2010; A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs. J Virol 84:716–728 [View Article][PubMed]
    [Google Scholar]
  31. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Sewer A., Zavolan M., Nair V. 2007; Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol 81:7164–7170 [View Article][PubMed]
    [Google Scholar]
  32. Zhao Y. G., Yao Y. X., Xu H. T., Lambeth L., Smith L. P., Kgosana L., Wang X. W., Nair V. 2009; A functional microRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83:489–492 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.037606-0
Loading
/content/journal/jgv/10.1099/vir.0.037606-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error