1887

Abstract

The dengue virus (DENV) envelope (E) protein mediates virus entry into cells via interaction with a range of cell-surface receptor molecules. Cell-surface glycosaminoglycans (GAGs) have been shown to play an early role in this interaction, and charged oligosaccharides such as heparin bind to the E protein. We have examined this interaction using site-directed mutagenesis of a recombinant form of the putative receptor-binding domain III of the DENV-2E protein expressed as an MBP (maltose-binding protein)-fusion protein. Using an ELISA-based GAG-binding assay, cell-based binding analysis and antiviral-activity assays, we have identified two critical residues, K291 and K295, that are involved in GAG interactions. These studies have also demonstrated differential binding between mosquito and human cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.037317-0
2012-01-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/72.html?itemId=/content/journal/jgv/10.1099/vir.0.037317-0&mimeType=html&fmt=ahah

References

  1. Abd-Jamil J., Cheah C. Y., AbuBakar S.. ( 2008;). Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites. . Protein Eng Des Sel 21:, 605–611. [CrossRef][PubMed]
    [Google Scholar]
  2. Akhtar J., Shukla D.. ( 2009;). Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. . FEBS J 276:, 7228–7236. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J., Marks R. M.. ( 1997;). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. . Nat Med 3:, 866–871. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen H.-L., Her S.-Y., Huang K.-C., Cheng H.-T., Wu C.-W., Wu S.-C., Cheng J.-W.. ( 2010;). Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein. . Biopolymers 94:, 331–338. [CrossRef][PubMed]
    [Google Scholar]
  5. Chu J. J., Rajamanonmani R., Li J., Bhuvanakantham R., Lescar J., Ng M. L.. ( 2005;). Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. . J Gen Virol 86:, 405–412. [CrossRef][PubMed]
    [Google Scholar]
  6. de Witte L., Bobardt M., Chatterji U., Degeest G., David G., Geijtenbeek T. B. H., Gallay P.. ( 2007;). Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. . Proc Natl Acad Sci U S A 104:, 19464–19469. [CrossRef][PubMed]
    [Google Scholar]
  7. Erb S. M., Butrapet S., Moss K. J., Luy B. E., Childers T., Calvert A. E., Silengo S. J., Roehrig J. T., Huang C. Y., Blair C. D.. ( 2010;). Domain-III FG loop of the dengue virus type 2 envelope protein is important for infection of mammalian cells and Aedes aegypti mosquitoes. . Virology 406:, 328–335. [CrossRef][PubMed]
    [Google Scholar]
  8. Fritz R., Stiasny K., Heinz F. X.. ( 2008;). Identification of specific histidines as pH sensors in flavivirus membrane fusion. . J Cell Biol 183:, 353–361. [CrossRef][PubMed]
    [Google Scholar]
  9. Germi R., Crance J. M., Garin D., Guimet J., Lortat-Jacob H., Ruigrok R. W., Zarski J. P., Drouet E.. ( 2002;). Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. . Virology 292:, 162–168. [CrossRef][PubMed]
    [Google Scholar]
  10. Guirakhoo F., Heinz F. X., Kunz C.. ( 1989;). Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. . Virology 169:, 90–99. [CrossRef][PubMed]
    [Google Scholar]
  11. Hallak L. K., Kwilas S. A., Peeples M. E.. ( 2007;). Interaction between respiratory syncytial virus and glycosaminoglycans, including heparan sulfate. . Methods Mol Biol 379:, 15–34. [CrossRef][PubMed]
    [Google Scholar]
  12. Hileman R. E., Fromm J. R., Weiler J. M., Linhardt R. J.. ( 1998;). Glycosaminoglycan–protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. . Bioessays 20:, 156–167. [CrossRef][PubMed]
    [Google Scholar]
  13. Hiramatsu K., Tadano M., Men R., Lai C. J.. ( 1996;). Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. . Virology 224:, 437–445. [CrossRef][PubMed]
    [Google Scholar]
  14. Huang K. C., Lee M. C., Wu C. W., Huang K. J., Lei H. Y., Cheng J. W.. ( 2008;). Solution structure and neutralizing antibody binding studies of domain III of the dengue-2 virus envelope protein. . Proteins 70:, 1116–1119. [CrossRef][PubMed]
    [Google Scholar]
  15. Hung S. L., Lee P. L., Chen H. W., Chen L. K., Kao C. L., King C. C.. ( 1999;). Analysis of the steps involved in dengue virus entry into host cells. . Virology 257:, 156–167. [CrossRef][PubMed]
    [Google Scholar]
  16. Hung J. J., Hsieh M. T., Young M. J., Kao C. L., King C. C., Chang W.. ( 2004;). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. . J Virol 78:, 378–388. [CrossRef][PubMed]
    [Google Scholar]
  17. Jindadamrongwech S., Thepparit C., Smith D. R.. ( 2004;). Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. . Arch Virol 149:, 915–927. [CrossRef][PubMed]
    [Google Scholar]
  18. Kampmann T., Mueller D. S., Mark A. E., Young P. R., Kobe B.. ( 2006;). The role of histidine residues in low-pH-mediated viral membrane fusion. . Structure 14:, 1481–1487. [CrossRef][PubMed]
    [Google Scholar]
  19. Kanai R., Kar K., Anthony K., Gould L. H., Ledizet M., Fikrig E., Marasco W. A., Koski R. A., Modis Y.. ( 2006;). Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. . J Virol 80:, 11000–11008. [CrossRef][PubMed]
    [Google Scholar]
  20. Kroschewski H., Allison S. L., Heinz F. X., Mandl C. W.. ( 2003;). Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. . Virology 308:, 92–100. [CrossRef][PubMed]
    [Google Scholar]
  21. Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay S., Chipman P. R., Strauss E. G.. ( 2002;). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. . Cell 108:, 717–725. [CrossRef][PubMed]
    [Google Scholar]
  22. Lee E., Lobigs M.. ( 2000;). Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. . J Virol 74:, 8867–8875. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee E., Lobigs M.. ( 2002;). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. . J Virol 76:, 4901–4911. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee E., Hall R. A., Lobigs M.. ( 2004;). Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. . J Virol 78:, 8271–8280. [CrossRef][PubMed]
    [Google Scholar]
  25. Lee E., Wright P. J., Davidson A., Lobigs M.. ( 2006;). Virulence attenuation of dengue virus due to augmented glycosaminoglycan-binding affinity and restriction in extraneural dissemination. . J Gen Virol 87:, 2791–2801. [CrossRef][PubMed]
    [Google Scholar]
  26. Liao M., Kielian M.. ( 2005;). Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. . J Cell Biol 171:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  27. Lin B., Parrish C. R., Murray J. M., Wright P. J.. ( 1994;). Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. . Virology 202:, 885–890. [CrossRef][PubMed]
    [Google Scholar]
  28. Mackenzie J. S., Gubler D. J., Petersen L. R.. ( 2004;). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef][PubMed]
    [Google Scholar]
  29. Miller J. L., de Wet B. J., Martinez-Pomares L., Radcliffe C. M., Dwek R. A., Rudd P. M., Gordon S.. ( 2008;). The mannose receptor mediates dengue virus infection of macrophages. . PLoS Pathog 4:, e17. [CrossRef][PubMed]
    [Google Scholar]
  30. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2003;). A ligand-binding pocket in the dengue virus envelope glycoprotein. . Proc Natl Acad Sci U S A 100:, 6986–6991. [CrossRef][PubMed]
    [Google Scholar]
  31. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2004;). Structure of the dengue virus envelope protein after membrane fusion. . Nature 427:, 313–319. [CrossRef][PubMed]
    [Google Scholar]
  32. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2005;). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. . J Virol 79:, 1223–1231. [CrossRef][PubMed]
    [Google Scholar]
  33. Mueller D. S., Kampmann T., Yennamalli R., Young P. R., Kobe B., Mark A. E.. ( 2008;). Histidine protonation and the activation of viral fusion proteins. . Biochem Soc Trans 36:, 43–45. [CrossRef][PubMed]
    [Google Scholar]
  34. Mukherjee M., Dutta K., White M. A., Cowburn D., Fox R. O.. ( 2006;). NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. . Protein Sci 15:, 1342–1355. [CrossRef][PubMed]
    [Google Scholar]
  35. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F., Desprès P.. ( 2003;). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. . EMBO Rep 4:, 723–728. [CrossRef][PubMed]
    [Google Scholar]
  36. Nishioka S., Aikawa J., Ida M., Matsumoto I., Street M., Tsujimoto M., Kojima-Aikawa K.. ( 2007;). Ligand-binding activity and expression profile of annexins in Caenorhabditis elegans. . J Biochem 141:, 47–55. [CrossRef][PubMed]
    [Google Scholar]
  37. Pokidysheva E., Zhang Y., Battisti A. J., Bator-Kelly C. M., Chipman P. R., Xiao C., Gregorio G. G., Hendrickson W. A., Kuhn R. J., Rossmann M. G.. ( 2006;). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. . Cell 124:, 485–493. [CrossRef][PubMed]
    [Google Scholar]
  38. Putnak J. R., Kanesa-Thasan N., Innis B. L.. ( 1997;). A putative cellular receptor for dengue viruses. . Nat Med 3:, 828–829. [CrossRef][PubMed]
    [Google Scholar]
  39. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C.. ( 1995;). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. . Nature 375:, 291–298. [CrossRef][PubMed]
    [Google Scholar]
  40. Reyes-del Valle J., Chávez-Salinas S., Medina F., del Angel R. M.. ( 2005;). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. . J Virol 79:, 4557–4567. [CrossRef][PubMed]
    [Google Scholar]
  41. Roehrig J. T., Bolin R. A., Kelly R. G.. ( 1998;). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. . Virology 246:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  42. Ruiz-Sáenz J., Goez Y., Tabares W., López-Herrera A.. ( 2009;). Cellular receptors for foot and mouth disease virus. . Intervirology 52:, 201–212. [CrossRef][PubMed]
    [Google Scholar]
  43. Su C. M., Liao C. L., Lee Y. L., Lin Y. L.. ( 2001;). Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. . Virology 286:, 206–215. [CrossRef][PubMed]
    [Google Scholar]
  44. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A., Trumpfheller C., Finke J., Sun W., Eller M. A., Pattanapanyasat K., Sarasombath S.. & other authors ( 2003;). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. . J Exp Med 197:, 823–829. [CrossRef][PubMed]
    [Google Scholar]
  45. Thaisomboonsuk B. K., Clayson E. T., Pantuwatana S., Vaughn D. W., Endy T. P.. ( 2005;). Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells. . Am J Trop Med Hyg 72:, 375–383.[PubMed]
    [Google Scholar]
  46. Thepparit C., Smith D. R.. ( 2004;). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. . J Virol 78:, 12647–12656. [CrossRef][PubMed]
    [Google Scholar]
  47. Thullier P., Demangel C., Bedouelle H., Mégret F., Jouan A., Deubel V., Mazié J. C., Lafaye P.. ( 2001;). Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. . J Gen Virol 82:, 1885–1892.[PubMed]
    [Google Scholar]
  48. Tio P. H., Jong W. W., Cardosa M. J.. ( 2005;). Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. . Virol J 2:, 25. [CrossRef][PubMed]
    [Google Scholar]
  49. Upanan S., Kuadkitkan A., Smith D. R.. ( 2008;). Identification of dengue virus binding proteins using affinity chromatography. . J Virol Methods 151:, 325–328. [CrossRef][PubMed]
    [Google Scholar]
  50. Vlasak M., Goesler I., Blaas D.. ( 2005;). Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. . J Virol 79:, 5963–5970. [CrossRef][PubMed]
    [Google Scholar]
  51. Volk D. E., Beasley D. W., Kallick D. A., Holbrook M. R., Barrett A. D., Gorenstein D. G.. ( 2004;). Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. . J Biol Chem 279:, 38755–38761. [CrossRef][PubMed]
    [Google Scholar]
  52. Volk D. E., Chavez L., Beasley D. W., Barrett A. D., Holbrook M. R., Gorenstein D. G.. ( 2006;). Structure of the envelope protein domain III of Omsk hemorrhagic fever virus. . Virology 351:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  53. Volk D. E., Lee Y. C., Li X., Thiviyanathan V., Gromowski G. D., Li L., Lamb A. R., Beasley D. W., Barrett A. D., Gorenstein D. G.. ( 2007;). Solution structure of the envelope protein domain III of dengue-4 virus. . Virology 364:, 147–154. [CrossRef][PubMed]
    [Google Scholar]
  54. WHO ( 2009;). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland:: World Health Organization;.
    [Google Scholar]
  55. Wu K. P., Wu C. W., Tsao Y. P., Kuo T. W., Lou Y. C., Lin C. W., Wu S. C., Cheng J. W.. ( 2003;). Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. . J Biol Chem 278:, 46007–46013. [CrossRef][PubMed]
    [Google Scholar]
  56. Wu C. W., Lin Y. T., Huang K. C., Cheng J. W.. ( 2005;). 1H, 15N and 13C resonance assignments of the domain III of the dengue virus envelope protein. . J Biomol NMR 33:, 76. [CrossRef][PubMed]
    [Google Scholar]
  57. Yu S., Wuu A., Basu R., Holbrook M. R., Barrett A. D. T., Lee J. C.. ( 2004;). Solution structure and structural dynamics of envelope protein domain III of mosquito- and tick-borne flaviviruses. . Biochemistry 43:, 9168–9176. [CrossRef][PubMed]
    [Google Scholar]
  58. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J. H., Baker T. S., Kuhn R. J., Rossmann M. G.. ( 2004;). Conformational changes of the flavivirus E glycoprotein. . Structure 12:, 1607–1618. [CrossRef][PubMed]
    [Google Scholar]
  59. Zhang J. L., Wang J. L., Gao N., Chen Z. T., Tian Y. P., An J.. ( 2007;). Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. . Biochem Biophys Res Commun 356:, 763–768. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.037317-0
Loading
/content/journal/jgv/10.1099/vir.0.037317-0
Loading

Data & Media loading...

Supplementary table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error