1887

Abstract

Human cytomegalovirus (HCMV) is a large DNA virus belonging to the subfamily . Haematopoietic cells of the myeloid lineage have been shown to harbour latent HCMV. However, following terminal differentiation of these cells, virus is reactivated, and in an immunocompromised host acute infection can occur. It is currently unknown which viral and cellular factors are involved in regulating the switch between lytic and latent infections. Cyclophilin A (CyPA) is a cellular protein that acts as a major factor in virus replication and/or virion maturation for a number of different viruses, including human immunodeficiency virus, hepatitis C virus, murine cytomegalovirus, influenza A virus and vaccinia virus. This study investigated the role of CyPA during HCMV infection. CyPA expression was silenced in human foreskin fibroblast (HF) and THP-1 cells using small interfering RNA (siRNA) technology, or the cells were treated with cyclosporin A (CsA) to inhibit CyPA activity. Silencing CyPA in HF cells with siRNA resulted in an overall reduction in virus production characterized by delayed expression of immediate-early (IE) proteins, decreased viral DNA loads and reduced titres. Furthermore, silencing of CyPA in THP-1 cells pre- and post-differentiation prevented IE protein expression and virus reactivation from a non-productive state. Interestingly, it was observed that treatment of THP-1 cells with CsA prevented the cells from establishing a fully latent infection. In summary, these results demonstrate that CyPA expression is an important factor in HCMV IE protein expression and virus production in lytically infected HF cells, and is a major component in virus reactivation from infected THP-1 cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.037309-0
2012-04-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/722.html?itemId=/content/journal/jgv/10.1099/vir.0.037309-0&mimeType=html&fmt=ahah

References

  1. Auwerx J. . ( 1991; ). The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. . Experientia 47:, 22–31. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bego M. G. , St Jeor S. . ( 2006; ). Human cytomegalovirus infection of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. . Exp Hematol 34:, 555–570. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beisser P. S. , Laurent L. , Virelizier J. L. , Michelson S. . ( 2001; ). Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. . J Virol 75:, 5949–5957. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bose S. , Mathur M. , Bates P. , Joshi N. , Banerjee A. K. . ( 2003; ). Requirement for cyclophilin A for the replication of vesicular stomatitis virus New Jersey serotype. . J Gen Virol 84:, 1687–1699. [CrossRef] [PubMed]
    [Google Scholar]
  5. Braaten D. , Franke E. K. , Luban J. . ( 1996; ). Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. . J Virol 70:, 3551–3560.[PubMed]
    [Google Scholar]
  6. Casareale D. , Fiala M. , Chang C. M. , Cone L. A. , Mocarski E. S. . ( 1989; ). Cytomegalovirus enhances lysis of HIV-infected T lymphoblasts. . Int J Cancer 44:, 124–130. [CrossRef] [PubMed]
    [Google Scholar]
  7. Castro A. P. , Carvalho T. M. , Moussatché N. , Damaso C. R. . ( 2003; ). Redistribution of cyclophilin A to viral factories during vaccinia virus infection and its incorporation into mature particles. . J Virol 77:, 9052–9068. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chatterji U. , Bobardt M. , Selvarajah S. , Yang F. , Tang H. , Sakamoto N. , Vuagniaux G. , Parkinson T. , Gallay P. . ( 2009; ). The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. . J Biol Chem 284:, 16998–17005. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cheung T. W. , Teich S. A. . ( 1999; ). Cytomegalovirus infection in patients with HIV infection. . Mt Sinai J Med 66:, 113–124.[PubMed]
    [Google Scholar]
  10. Coley W. , Van Duyne R. , Carpio L. , Guendel I. , Kehn-Hall K. , Chevalier S. , Narayanan A. , Luu T. , Lee N. . & other authors ( 2010; ). Absence of DICER in monocytes and its regulation by HIV-1. . J Biol Chem 285:, 31930–31943. [CrossRef] [PubMed]
    [Google Scholar]
  11. Delannoy A. S. , Hober D. , Bouzidi A. , Wattre P. . ( 1997; ). A macrophage-like cell model for testing anti-CMV drugs. . Pathol Biol (Paris) 45:, 394–399.[PubMed]
    [Google Scholar]
  12. Fischer G. , Gallay P. , Hopkins S. . ( 2010; ). Cyclophilin inhibitors for the treatment of HCV infection. . Curr Opin Investig Drugs 11:, 911–918.[PubMed]
    [Google Scholar]
  13. Flisiak R. , Horban A. , Gallay P. , Bobardt M. , Selvarajah S. , Wiercinska-Drapalo A. , Siwak E. , Cielniak I. , Higersberger J. . & other authors ( 2008; ). The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. . Hepatology 47:, 817–826. [CrossRef] [PubMed]
    [Google Scholar]
  14. Grebeñová D. , Kuzelová K. , Pluskalová M. , Peslová G. , Halada P. , Hrkal Z. . ( 2006; ). The proteomic study of sodium butyrate antiproliferative/cytodifferentiation effects on K562 cells. . Blood Cells Mol Dis 37:, 210–217. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hahn G. , Jores R. , Mocarski E. S. . ( 1998; ). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. . Proc Natl Acad Sci U S A 95:, 3937–3942. [CrossRef] [PubMed]
    [Google Scholar]
  16. Handschumacher R. E. , Harding M. W. , Rice J. , Drugge R. J. , Speicher D. W. . ( 1984; ). Cyclophilin: a specific cytosolic binding protein for cyclosporin A. . Science 226:, 544–547. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hornef M. W. , Bein G. , Fricke L. , Steinhoff J. , Wagner H. J. , Hinderer W. , Sonneborn H. H. , Kirchner H. . ( 1995; ). Coincidence of Epstein–Barr virus reactivation, cytomegalovirus infection, and rejection episodes in renal transplant recipients. . Transplantation 60:, 474–480. [CrossRef] [PubMed]
    [Google Scholar]
  18. Horváth R. , Cerný J. , Benedík J. Jr , Hökl J. , Jelínková I. , Benedík J. . ( 2000; ). The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. . J Clin Virol 16:, 17–24. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ioudinkova E. , Arcangeletti M. C. , Rynditch A. , De Conto F. , Motta F. , Covan S. , Pinardi F. , Razin S. V. , Chezzi C. . ( 2006; ). Control of human cytomegalovirus gene expression by differential histone modifications during lytic and latent infection of a monocytic cell line. . Gene 384:, 120–128. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kambara H. , Tani H. , Mori Y. , Abe T. , Katoh H. , Fukuhara T. , Taguwa S. , Moriishi K. , Matsuura Y. . ( 2011; ). Involvement of cyclophilin B in the replication of Japanese encephalitis virus. . Virology 412:, 211–219. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kaul A. , Stauffer S. , Berger C. , Pertel T. , Schmitt J. , Kallis S. , Zayas M. , Lohmann V. , Luban J. , Bartenschlager R. . ( 2009; ). Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. . PLoS Pathog 5:, e1000546. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kawasaki H. , Mocarski E. S. , Kosugi I. , Tsutsui Y. . ( 2007; ). Cyclosporine inhibits mouse cytomegalovirus infection via a cyclophilin-dependent pathway specifically in neural stem/progenitor cells. . J Virol 81:, 9013–9023. [CrossRef] [PubMed]
    [Google Scholar]
  23. Khaiboullina S. F. , Maciejewski J. P. , Crapnell K. , Spallone P. A. , Dean Stock A. , Pari G. S. , Zanjani E. D. , Jeor S. S. . ( 2004; ). Human cytomegalovirus persists in myeloid progenitors and is passed to the myeloid progeny in a latent form. . Br J Haematol 126:, 410–417. [CrossRef] [PubMed]
    [Google Scholar]
  24. Khoshnevis M. , Tyring S. K. . ( 2002; ). Cytomegalovirus infections. . Dermatol Clin 20:, 291–299, vii. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lammers M. , Neumann H. , Chin J. W. , James L. C. . ( 2010; ). Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. . Nat Chem Biol 6:, 331–337. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lang P. , Griesinger A. , Hamprecht K. , Feuchtinger T. , Schumm M. , Neuhäuser F. , Greil J. , Martin D. , Handgretinger R. , Niethammer D. . ( 2004; ). Antiviral activity against CMV-infected fibroblasts in pediatric patients transplanted with CD34+-selected allografts from alternative donors. . Hum Immunol 65:, 423–431. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lee C. H. , Lee G. C. , Chan Y. J. , Chiou C. J. , Ahn J. H. , Hayward G. S. . ( 1999; ). Factors affecting human cytomegalovirus gene expression in human monocyte cell lines. . Mol Cells 9:, 37–44.[PubMed]
    [Google Scholar]
  28. Leone V. , Lattanzi G. , Molteni C. , Carloni P. . ( 2009; ). Mechanism of action of cyclophilin A explored by metadynamics simulations. . PLOS Comput Biol 5:, e1000309. [CrossRef] [PubMed]
    [Google Scholar]
  29. Li J. , Tan Z. , Tang S. , Hewlett I. , Pang R. , He M. , He S. , Tian B. , Chen K. , Yang M. . ( 2009a; ). Discovery of dual inhibitors targeting both HIV-1 capsid and human cyclophilin A to inhibit the assembly and uncoating of the viral capsid. . Bioorg Med Chem 17:, 3177–3188. [CrossRef] [PubMed]
    [Google Scholar]
  30. Li Y. , Kar A. K. , Sodroski J. . ( 2009b; ). Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. . J Virol 83:, 10951–10962. [CrossRef] [PubMed]
    [Google Scholar]
  31. Liu X. , Sun L. , Yu M. , Wang Z. , Xu C. , Xue Q. , Zhang K. , Ye X. , Kitamura Y. , Liu W. . ( 2009a; ). Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. . Cell Microbiol 11:, 730–741. [CrossRef] [PubMed]
    [Google Scholar]
  32. Liu Z. , Yang F. , Robotham J. M. , Tang H. . ( 2009b; ). Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. . J Virol 83:, 6554–6565. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ma S. , Boerner J. E. , TiongYip C. , Weidmann B. , Ryder N. S. , Cooreman M. P. , Lin K. . ( 2006; ). NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. . Antimicrob Agents Chemother 50:, 2976–2982. [CrossRef] [PubMed]
    [Google Scholar]
  34. Maciejewski J. P. , Bruening E. E. , Donahue R. E. , Mocarski E. S. , Young N. S. , St Jeor S. C. . ( 1992; ). Infection of hematopoietic progenitor cells by human cytomegalovirus. . Blood 80:, 170–178.[PubMed]
    [Google Scholar]
  35. Maeß M. B. , Sendelbach S. , Lorkowski S. . ( 2010; ). Selection of reliable reference genes during THP-1 monocyte differentiation into macrophages. . BMC Mol Biol 11:, 90. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nakagawa M. , Sakamoto N. , Tanabe Y. , Koyama T. , Itsui Y. , Takeda Y. , Chen C. H. , Kakinuma S. , Oooka S. . & other authors ( 2005; ). Suppression of hepatitis C virus replication by cyclosporin A is mediated by blockade of cyclophilins. . Gastroenterology 129:, 1031–1041. [CrossRef] [PubMed]
    [Google Scholar]
  37. Numazaki K. , Nagata N. , Sato T. , Chiba S. . ( 1992; ). Replication of human cytomegalovirus in the cells of the U937 monocytoid cell line. . Med Microbiol Immunol (Berl) 181:, 323–331. [CrossRef] [PubMed]
    [Google Scholar]
  38. Obchoei S. , Weakley S. M. , Wongkham S. , Wongkham C. , Sawanyawisuth K. , Yao Q. , Chen C. . ( 2011; ). Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. . Mol Cancer 10:, 102. [CrossRef] [PubMed]
    [Google Scholar]
  39. Paeshuyse J. , Kaul A. , De Clercq E. , Rosenwirth B. , Dumont J. M. , Scalfaro P. , Bartenschlager R. , Neyts J. . ( 2006; ). The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro . . Hepatology 43:, 761–770. [CrossRef] [PubMed]
    [Google Scholar]
  40. Potena L. , Holweg C. T. , Chin C. , Luikart H. , Weisshaar D. , Narasimhan B. , Fearon W. F. , Lewis D. B. , Cooke J. P. . & other authors ( 2006; ). Acute rejection and cardiac allograft vascular disease is reduced by suppression of subclinical cytomegalovirus infection. . Transplantation 82:, 398–405. [CrossRef] [PubMed]
    [Google Scholar]
  41. Prichard M. N. , Gao N. , Jairath S. , Mulamba G. , Krosky P. , Coen D. M. , Parker B. O. , Pari G. S. . ( 1999; ). A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. . J Virol 73:, 5663–5670.[PubMed]
    [Google Scholar]
  42. Riegler S. , Hebart H. , Einsele H. , Brossart P. , Jahn G. , Sinzger C. . ( 2000; ). Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. . J Gen Virol 81:, 393–399.[PubMed]
    [Google Scholar]
  43. Saini M. , Potash M. J. . ( 2006; ). Novel activities of cyclophilin A and cyclosporin A during HIV-1 infection of primary lymphocytes and macrophages. . J Immunol 177:, 443–449.[PubMed] [CrossRef]
    [Google Scholar]
  44. Sinzger C. , Digel M. , Jahn G. . ( 2008; ). Cytomegalovirus cell tropism. . Curr Top Microbiol Immunol 325:, 63–83. [CrossRef] [PubMed]
    [Google Scholar]
  45. Söderberg-Nauclér C. , Fish K. N. , Nelson J. A. . ( 1997; ). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. . Cell 91:, 119–126. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sokolskaja E. , Luban J. . ( 2006; ). Cyclophilin, TRIM5, and innate immunity to HIV-1. . Curr Opin Microbiol 9:, 404–408. [CrossRef] [PubMed]
    [Google Scholar]
  47. Solbak S. M. , Reksten T. R. , Wray V. , Bruns K. , Horvli O. , Raae A. J. , Henklein P. , Henklein P. , Röder R. . & other authors ( 2010; ). The intriguing cyclophilin A–HIV-1 Vpr interaction: prolyl cis/trans isomerisation catalysis and specific binding. . BMC Struct Biol 10:, 31.[PubMed] [CrossRef]
    [Google Scholar]
  48. Song J. , Lu Y.-C. , Yokoyama K. , Rossi J. , Chiu R. . ( 2004; ). Cyclophilin A is required for retinoic acid-induced neuronal differentiation in p19 cells. . J Biol Chem 279:, 24414–24419. [CrossRef] [PubMed]
    [Google Scholar]
  49. Stanier P. , Taylor D. L. , Kitchen A. D. , Wales N. , Tryhorn Y. , Tyms A. S. . ( 1989; ). Persistence of cytomegalovirus in mononuclear cells in peripheral blood from blood donors. . BMJ 299:, 897–898. [CrossRef] [PubMed]
    [Google Scholar]
  50. Suzuki H. , Forrest A. R. , van Nimwegen E. , Daub C. O. , Balwierz P. J. , Irvine K. M. , Lassmann T. , Ravasi T. , Hasegawa Y. . & other authors ( 2009; ). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. . Nat Genet 41:, 553–562. [CrossRef] [PubMed]
    [Google Scholar]
  51. Taylor-Wiedeman J. , Sissons J. G. , Borysiewicz L. K. , Sinclair J. H. . ( 1991; ). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. . J Gen Virol 72:, 2059–2064. [CrossRef] [PubMed]
    [Google Scholar]
  52. Taylor-Wiedeman J. , Hayhurst G. P. , Sissons J. G. , Sinclair J. H. . ( 1993; ). Polymorphonuclear cells are not sites of persistence of human cytomegalovirus in healthy individuals. . J Gen Virol 74:, 265–268. [CrossRef] [PubMed]
    [Google Scholar]
  53. Turtinen L. W. , Seufzer B. J. . ( 1994; ). Selective permissiveness of TPA differentiated THP-1 myelomonocytic cells for human cytomegalovirus strains AD169 and Towne. . Microb Pathog 16:, 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vancíková Z. , Dvorák P. . ( 2001; ). Cytomegalovirus infection in immunocompetent and immunocompromised individuals – a review. . Curr Drug Targets Immune Endocr Metabol Disord 1:, 179–187. [CrossRef] [PubMed]
    [Google Scholar]
  55. Watashi K. . ( 2010; ). Alisporivir, a cyclosporin derivative that selectively inhibits cyclophilin, for the treatment of HCV infection. . Curr Opin Investig Drugs 11:, 213–224.[PubMed]
    [Google Scholar]
  56. Weinshenker B. G. , Wilton S. , Rice G. P. . ( 1988; ). Phorbol ester-induced differentiation permits productive human cytomegalovirus infection in a monocytic cell line. . J Immunol 140:, 1625–1631.[PubMed]
    [Google Scholar]
  57. Willenbrink W. , Halaschek J. , Schuffenhauer S. , Kunz J. , Steinkasserer A. . ( 1995; ). Cyclophilin A, the major intracellular receptor for the immunosuppressant cyclosporin A, maps to chromosome 7p11.2-p13: four pseudogenes map to chromosomes 3, 10, 14, and 18. . Genomics 28:, 101–104. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yang F. , Robotham J. M. , Nelson H. B. , Irsigler A. , Kenworthy R. , Tang H. . ( 2008; ). Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. . J Virol 82:, 5269–5278. [CrossRef] [PubMed]
    [Google Scholar]
  59. Yee L.-F. , Lin P. L. , Stinski M. F. . ( 2007; ). Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. . Virology 363:, 174–188. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zhuravskaya T. , Maciejewski J. P. , Netski D. M. , Bruening E. , Mackintosh F. R. , St Jeor S. . ( 1997; ). Spread of human cytomegalovirus (HCMV) after infection of human hematopoietic progenitor cells: model of HCMV latency. . Blood 90:, 2482–2491.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.037309-0
Loading
/content/journal/jgv/10.1099/vir.0.037309-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error