1887

Abstract

Generation of an abnormal isoform of the prion protein (PrP) is a key aspect of the propagation of prions. Elucidation of the intracellular localization of PrP in prion-infected cells facilitates the understanding of the cellular mechanism of prion propagation. However, technical improvement in PrP-specific detection is required for precise analysis. Here, we show that the mAb 132, which recognizes the region adjacent to the most amyloidogenic region of PrP, is useful for PrP-specific detection by immunofluorescence assay in cells pre-treated with guanidine thiocyanate. Extensive analysis of the intracellular localization of PrP in prion-infected cells using mAb 132 revealed the presence of PrP throughout endocytic compartments. In particular, some of the granular PrP signals that were clustered at peri-nuclear regions appeared to be localized in an endocytic recycling compartment through which exogenously loaded transferrin, shiga and cholera toxin B subunits were transported. The granular PrP signals at peri-nuclear regions were dispersed to the peripheral regions including the plasma membrane during incubation at 20 °C, at which temperature transport from the plasma membrane to peri-nuclear regions was impaired. Conversely, dispersed PrP signals appeared to return to peri-nuclear regions within 30 min during subsequent incubation at 37 °C, following which PrP at peri-nuclear regions appeared to redisperse again to peripheral regions over the next 30 min incubation. These results suggest that PrP is dynamically transported along with the membrane trafficking machinery of cells and that at least some PrP circulates between peri-nuclear and peripheral regions including the plasma membrane via an endocytic recycling pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.037101-0
2012-03-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/3/668.html?itemId=/content/journal/jgv/10.1099/vir.0.037101-0&mimeType=html&fmt=ahah

References

  1. Arnold J. E. , Tipler C. , Laszlo L. , Hope J. , Landon M. , Mayer R. J. . ( 1995; ). The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. . J Pathol 176:, 403–411. [CrossRef] [PubMed]
    [Google Scholar]
  2. Browman D. T. , Hoegg M. B. , Robbins S. M. . ( 2007; ). The SPFH domain-containing proteins: more than lipid raft markers. . Trends Cell Biol 17:, 394–402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Callahan M. A. , Xiong L. , Caughey B. . ( 2001; ). Reversibility of scrapie-associated prion protein aggregation. . J Biol Chem 276:, 28022–28028. [CrossRef] [PubMed]
    [Google Scholar]
  4. Campana V. , Sarnataro D. , Zurzolo C. . ( 2005; ). The highways and byways of prion protein trafficking. . Trends Cell Biol 15:, 102–111. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dron M. , Dandoy-Dron F. , Farooq Salamat M. K. , Laude H. . ( 2009; ). Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells. . J Gen Virol 90:, 2050–2060. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fournier J. G. , Escaig-Haye F. , Grigoriev V. . ( 2000; ). Ultrastructural localization of prion proteins: physiological and pathological implications. . Microsc Res Tech 50:, 76–88. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gasset M. , Baldwin M. A. , Lloyd D. H. , Gabriel J. M. , Holtzman D. M. , Cohen F. , Fletterick R. , Prusiner S. B. . ( 1992; ). Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. . Proc Natl Acad Sci U S A 89:, 10940–10944. [CrossRef] [PubMed]
    [Google Scholar]
  8. Glebov O. O. , Bright N. A. , Nichols B. J. . ( 2006; ). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. . Nat Cell Biol 8:, 46–54. [CrossRef] [PubMed]
    [Google Scholar]
  9. Godsave S. F. , Wille H. , Kujala P. , Latawiec D. , DeArmond S. J. , Serban A. , Prusiner S. B. , Peters P. J. . ( 2008; ). Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. . J Neurosci 28:, 12489–12499. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grant B. D. , Donaldson J. G. . ( 2009; ). Pathways and mechanisms of endocytic recycling. . Nat Rev Mol Cell Biol 10:, 597–608. [CrossRef] [PubMed]
    [Google Scholar]
  11. Horiuchi M. , Mochizuki M. , Ishiguro N. , Nagasawa H. , Shinagawa M. . ( 1997; ). Epitope mapping of a monoclonal antibody specific to feline panleukopenia virus and mink enteritis virus. . J Vet Med Sci 59:, 133–136. [CrossRef] [PubMed]
    [Google Scholar]
  12. Horiuchi M. , Karino A. , Furuoka H. , Ishiguro N. , Kimura K. , Shinagawa M. . ( 2009; ). Generation of monoclonal antibody that distinguishes PrPSc from PrPC and neutralizes prion infectivity. . Virology 394:, 200–207. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jeffrey M. , Goodsir C. M. , Bruce M. E. , McBride P. A. , Scott J. R. , Halliday W. G. . ( 1992; ). Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. . Neurosci Lett 147:, 106–109. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim C.-L. , Karino A. , Ishiguro N. , Shinagawa M. , Sato M. , Horiuchi M. . ( 2004a; ). Cell-surface retention of PrPC by anti-PrP antibody prevents protease-resistant PrP formation. . J Gen Virol 85:, 3473–3482. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim C.-L. , Umetani A. , Matsui T. , Ishiguro N. , Shinagawa M. , Horiuchi M. . ( 2004b; ). Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies. . Virology 320:, 40–51. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kocisko D. A. , Lansbury P. T. Jr , Caughey B. . ( 1996; ). Partial unfolding and refolding of scrapie-associated prion protein: evidence for a critical 16-kDa C-terminal domain. . Biochemistry 35:, 13434–13442. [CrossRef] [PubMed]
    [Google Scholar]
  17. Korth C. , Stierli B. , Streit P. , Moser M. , Schaller O. , Fischer R. , Schulz-Schaeffer W. , Kretzschmar H. , Raeber A. . & other authors ( 1997; ). Prion (PrPSc)-specific epitope defined by a monoclonal antibody. . Nature 390:, 74–77. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kristiansen M. , Messenger M. J. , Klöhn P. C. , Brandner S. , Wadsworth J. D. , Collinge J. , Tabrizi S. J. . ( 2005; ). Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. . J Biol Chem 280:, 38851–38861. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lieu Z. Z. , Gleeson P. A. . ( 2010; ). Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. . Eur J Cell Biol 89:, 379–393. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lin A. E. , Guttman J. A. . ( 2010; ). Hijacking the endocytic machinery by microbial pathogens. . Protoplasma 244:, 75–90. [CrossRef] [PubMed]
    [Google Scholar]
  21. Magalhães A. C. , Silva J. A. , Lee K. S. , Martins V. R. , Prado V. F. , Ferguson S. S. , Gomez M. V. , Brentani R. R. , Prado M. A. . ( 2002; ). Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. . J Biol Chem 277:, 33311–33318. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mallard F. , Antony C. , Tenza D. , Salamero J. , Goud B. , Johannes L. . ( 1998; ). Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. . J Cell Biol 143:, 973–990. [CrossRef] [PubMed]
    [Google Scholar]
  23. Marijanovic Z. , Caputo A. , Campana V. , Zurzolo C. . ( 2009; ). Identification of an intracellular site of prion conversion. . PLoS Pathog 5:, e1000426. [CrossRef] [PubMed]
    [Google Scholar]
  24. Maxfield F. R. , McGraw T. E. . ( 2004; ). Endocytic recycling. . Nat Rev Mol Cell Biol 5:, 121–132. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mayor S. , Riezman H. . ( 2004; ). Sorting GPI-anchored proteins. . Nat Rev Mol Cell Biol 5:, 110–120. [CrossRef] [PubMed]
    [Google Scholar]
  26. McKinley M. P. , Taraboulos A. , Kenaga L. , Serban D. , Stieber A. , DeArmond S. J. , Prusiner S. B. , Gonatas N. . ( 1991; ). Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. . Lab Invest 65:, 622–630.[PubMed]
    [Google Scholar]
  27. Morris R. J. , Parkyn C. J. , Jen A. . ( 2006; ). Traffic of prion protein between different compartments on the neuronal surface, and the propagation of prion disease. . FEBS Lett 580:, 5565–5571. [CrossRef] [PubMed]
    [Google Scholar]
  28. Murphy A. S. , Bandyopadhyay A. , Holstein S. E. , Peer W. A. . ( 2005; ). Endocytotic cycling of PM proteins. . Annu Rev Plant Biol 56:, 221–251. [CrossRef] [PubMed]
    [Google Scholar]
  29. Nakamitsu S. , Kurokawa A. , Yamasaki T. , Uryu M. , Hasebe R. , Horiuchi M. . ( 2010; ). Cell density-dependent increase in the level of protease-resistant prion protein in prion-infected Neuro2a mouse neuroblastoma cells. . J Gen Virol 91:, 563–569. [CrossRef]
    [Google Scholar]
  30. Nichols B. J. , Kenworthy A. K. , Polishchuk R. S. , Lodge R. , Roberts T. H. , Hirschberg K. , Phair R. D. , Lippincott-Schwartz J. . ( 2001; ). Rapid cycling of lipid raft markers between the cell surface and Golgi complex. . J Cell Biol 153:, 529–542. [CrossRef] [PubMed]
    [Google Scholar]
  31. Paramithiotis E. , Pinard M. , Lawton T. , LaBoissiere S. , Leathers V. L. , Zou W. Q. , Estey L. A. , Lamontagne J. , Lehto M. T. . & other authors ( 2003; ). A prion protein epitope selective for the pathologically misfolded conformation. . Nat Med 9:, 893–899. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pimpinelli F. , Lehmann S. , Maridonneau-Parini I. . ( 2005; ). The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines. . Eur J Neurosci 21:, 2063–2072. [CrossRef] [PubMed]
    [Google Scholar]
  33. Prado M. A. , Alves-Silva J. , Magalhães A. C. , Prado V. F. , Linden R. , Martins V. R. , Brentani R. R. . ( 2004; ). PrPC on the road: trafficking of the cellular prion protein. . J Neurochem 88:, 769–781. [CrossRef] [PubMed]
    [Google Scholar]
  34. Prusiner S. B. . ( 1998; ). Prions. . Proc Natl Acad Sci U S A 95:, 13363–13383. [CrossRef] [PubMed]
    [Google Scholar]
  35. Ren M. , Xu G. , Zeng J. , De Lemos-Chiarandini C. , Adesnik M. , Sabatini D. D. . ( 1998; ). Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. . Proc Natl Acad Sci U S A 95:, 6187–6192. [CrossRef] [PubMed]
    [Google Scholar]
  36. Schätzl H. M. , Laszlo L. , Holtzman D. M. , Tatzelt J. , DeArmond S. J. , Weiner R. I. , Mobley W. C. , Prusiner S. B. . ( 1997; ). A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. . J Virol 71:, 8821–8831.[PubMed]
    [Google Scholar]
  37. Shimizu T. , Kawakami S. , Sato T. , Sasaki T. , Higashide M. , Hamabata T. , Ohta T. , Noda M. . ( 2007; ). The serine 31 residue of the B subunit of Shiga toxin 2 is essential for secretion in enterohemorrhagic Escherichia coli . . Infect Immun 75:, 2189–2200. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shindoh R. , Kim C.-L. , Song C.-H. , Hasebe R. , Horiuchi M. . ( 2009; ). The region approximately between amino acids 81 and 137 of proteinase K-resistant PrPSc is critical for the infectivity of the Chandler prion strain. . J Virol 83:, 3852–3860. [CrossRef] [PubMed]
    [Google Scholar]
  39. Silveira J. R. , Raymond G. J. , Hughson A. G. , Race R. E. , Sim V. L. , Hayes S. F. , Caughey B. . ( 2005; ). The most infectious prion protein particles. . Nature 437:, 257–261. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sipe D. M. , Jesurum A. , Murphy R. F. . ( 1991; ). Absence of Na+, K+-ATPase regulation of endosomal acidification in K562 erythroleukemia cells. Analysis via inhibition of transferrin recycling by low temperatures. . J Biol Chem 266:, 3469–3474.[PubMed]
    [Google Scholar]
  41. Stenmark H. . ( 2009; ). Rab GTPases as coordinators of vesicle traffic. . Nat Rev Mol Cell Biol 10:, 513–525. [CrossRef] [PubMed]
    [Google Scholar]
  42. Taraboulos A. , Serban D. , Prusiner S. B. . ( 1990; ). Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. . J Cell Biol 110:, 2117–2132. [CrossRef] [PubMed]
    [Google Scholar]
  43. Uryu M. , Karino A. , Kamihara Y. , Horiuchi M. . ( 2007; ). Characterization of prion susceptibility in Neuro2a mouse neuroblastoma cell subclones. . Microbiol Immunol 51:, 661–669.[PubMed] [CrossRef]
    [Google Scholar]
  44. Veith N. M. , Plattner H. , Stuermer C. A. , Schulz-Schaeffer W. J. , Bürkle A. . ( 2009; ). Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. . Eur J Cell Biol 88:, 45–63. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.037101-0
Loading
/content/journal/jgv/10.1099/vir.0.037101-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error