1887

Abstract

Citrus tristeza virus (CTV) has been studied intensively at the molecular level. However, knowledge regarding the dynamics of its evolution is practically non-existent. In the past, diverse authors have referred to CTV as a highly variable virus, implying rapid evolution. Others have, in recent times, referred to CTV as an exceptionally slowly evolving virus. In this work, we used the capsid protein (CP) gene to estimate the rate of evolution. This was obtained from a large set of heterochronous CP gene sequences using a Bayesian coalescent approach. The best-fitting evolutionary and population models pointed to an evolutionary rate of 1.58×10 nt per site year (95 % highest posterior density, 1.73×10–3.16×10 nt per site year). For an unbiased comparison with other plant and animal viruses, the evolutionary rate of synonymous substitutions was considered. In a series of 88 synonymous evolutionary rates, ranging from 5.2×10 to 6.2×10 nt per site year, CTV ranks in the 10th percentile, embedded among the slowest animal RNA viruses. At the time of citrus dissemination to Europe and the New World, the major clades that led to the current phylogenetic groups were already defined, which may explain the absence nowadays of geographical speciation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.036574-0
2012-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/419.html?itemId=/content/journal/jgv/10.1099/vir.0.036574-0&mimeType=html&fmt=ahah

References

  1. Albiach-Martí M. R. , Mawassi M. , Gowda S. , Satyanarayana T. , Hilf M. E. , Shanker S. , Almira E. C. , Vives M. C. , López C. . & other authors ( 2000; ). Sequences of Citrus tristeza virus separated in time and space are essentially identical. . J Virol 74:, 6856–6865. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baltimore D. , Girard M. , Darnell J. E. . ( 1966; ). Aspects of the synthesis of poliovirus RNA and the formation of virus particles. . Virology 29:, 179–189. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bar-Joseph M. , Marcus R. , Lee R. F. . ( 1989; ). The continuous challenge of citrus tristeza virus control. . Annu Rev Phytopathol 27:, 291–316. [CrossRef]
    [Google Scholar]
  4. Blok J. , Mackenzie A. , Guy P. , Gibbs A. . ( 1987; ). Nucleotide sequence comparisons of turnip yellow mosaic virus isolates from Australia and Europe. . Arch Virol 97:, 283–295. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chare E. R. , Holmes E. C. . ( 2004; ). Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. . J Gen Virol 85:, 3149–3157. [CrossRef] [PubMed]
    [Google Scholar]
  6. Condit I. J. , Benemerito A. N. , Chen W. H. . ( 1936; ). Citrus fruits and their culture in Kwangtung Province, South China. AgNIC (Agriculture Network Information Center). . Riverside, CA:: University of California;. http://websites.lib.ucr.edu/agnic/condit.pdf
  7. Dolja V. V. , Kreuze J. F. , Valkonen J. P. . ( 2006; ). Comparative and functional genomics of closteroviruses. . Virus Res 117:, 38–51. [CrossRef] [PubMed]
    [Google Scholar]
  8. Drake J. W. , Holland J. J. . ( 1999; ). Mutation rates among RNA viruses. . Proc Natl Acad Sci U S A 96:, 13910–13913. [CrossRef] [PubMed]
    [Google Scholar]
  9. Drummond A. J. , Rambaut A. . ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  10. Drummond A. J. , Pybus O. G. , Rambaut A. , Forsberg R. , Rodrigo A. G. . ( 2003; ). Measurably evolving populations. . Trends Ecol Evol 18:, 481–488. [CrossRef]
    [Google Scholar]
  11. Drummond A. J. , Rambaut A. , Shapiro B. , Pybus O. G. . ( 2005; ). Bayesian coalescent inference of past population dynamics from molecular sequences. . Mol Biol Evol 22:, 1185–1192. [CrossRef] [PubMed]
    [Google Scholar]
  12. Drummond A. J. , Ho S. Y. , Phillips M. J. , Rambaut A. . ( 2006; ). Relaxed phylogenetics and dating with confidence. . PLoS Biol 4:, e88. [CrossRef] [PubMed]
    [Google Scholar]
  13. Duffy S. , Holmes E. C. . ( 2008; ). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. . J Virol 82:, 957–965. [CrossRef] [PubMed]
    [Google Scholar]
  14. Duffy S. , Holmes E. C. . ( 2009; ). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. . J Gen Virol 90:, 1539–1547. [CrossRef] [PubMed]
    [Google Scholar]
  15. Eckerle L. D. , Becker M. M. , Halpin R. A. , Li K. , Venter E. , Lu X. , Scherbakova S. , Graham R. L. , Baric R. S. . & other authors ( 2010; ). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. . PLoS Pathog 6:, e1000896. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fargette D. , Pinel A. , Rakotomalala M. , Sangu E. , Traoré O. , Sérémé D. , Sorho F. , Issaka S. , Hébrard E. . & other authors ( 2008; ). Rice yellow mottle virus, an RNA plant virus, evolves as rapidly as most RNA animal viruses. . J Virol 82:, 3584–3589. [CrossRef] [PubMed]
    [Google Scholar]
  17. Febres V. J. , Ashoulin L. , Mawassi M. , Frank A. , Bar-Joseph M. , Manjunath K. L. , Lee R. F. , Niblett C. L. . ( 1996; ). The P27 protein is present at one end of citrus tristeza virus particles. . Phytopathology 86:, 1331–1335.
    [Google Scholar]
  18. Firth C. , Kitchen A. , Shapiro B. , Suchard M. A. , Holmes E. C. , Rambaut A. . ( 2010; ). Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. . Mol Biol Evol 27:, 2038–2051. [CrossRef] [PubMed]
    [Google Scholar]
  19. Folimonova S. Y. , Folimonov A. S. , Tatineni S. , Dawson W. O. . ( 2008; ). Citrus tristeza virus: survival at the edge of the movement continuum. . J Virol 82:, 6546–6556. [CrossRef] [PubMed]
    [Google Scholar]
  20. Folimonova S. Y. , Robertson C. J. , Shilts T. , Folimonov A. S. , Hilf M. E. , Garnsey S. M. , Dawson W. O. . ( 2010; ). Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. . J Virol 84:, 1314–1325. [CrossRef] [PubMed]
    [Google Scholar]
  21. Formella S. , Jehle C. , Sauder C. , Staeheli P. , Schwemmle M. . ( 2000; ). Sequence variability of Borna disease virus: resistance to superinfection may contribute to high genome stability in persistently infected cells. . J Virol 74:, 7878–7883. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fraile A. , Escriu F. , Aranda M. A. , Malpica J. M. , Gibbs A. J. , García-Arenal F. . ( 1997; ). A century of tobamovirus evolution in an Australian population of Nicotiana glauca . . J Virol 71:, 8316–8320.[PubMed]
    [Google Scholar]
  23. French R. , Stenger D. C. . ( 2003; ). Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. . Annu Rev Phytopathol 41:, 199–214. [CrossRef] [PubMed]
    [Google Scholar]
  24. García-Arenal F. , Fraile A. , Malpica J. M. . ( 2003; ). Variation and evolution of plant virus populations. . Int Microbiol 6:, 225–232. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gibbs A. J. , Fargette D. , García-Arenal F. , Gibbs M. J. . ( 2010; ). Time – the emerging dimension of plant virus studies. . J Gen Virol 91:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  26. Gorbalenya A. E. , Enjuanes L. , Ziebuhr J. , Snijder E. J. . ( 2006; ). Nidovirales: evolving the largest RNA virus genome. . Virus Res 117:, 17–37. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hanada K. , Suzuki Y. , Gojobori T. . ( 2004; ). A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. . Mol Biol Evol 21:, 1074–1080. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hilf M. E. , Mavrodieva V. A. , Garnsey S. M. . ( 2005; ). Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of CTV genotypes and association with symptoms. . Phytopathology 95:, 909–917. [CrossRef] [PubMed]
    [Google Scholar]
  29. Jenkins G. M. , Rambaut A. , Pybus O. G. , Holmes E. C. . ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. . J Mol Evol 54:, 156–165. [CrossRef] [PubMed]
    [Google Scholar]
  30. Karasev A. V. . ( 2000; ). Genetic diversity and evolution of closteroviruses. . Annu Rev Phytopathol 38:, 293–324. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kass R. E. , Raftery A. E. . ( 1995; ). Bayes factors. . J American Statistic Assoc 90:, 773–795. [CrossRef]
    [Google Scholar]
  32. Lbida B. , Fonseca F. , Santos C. , Zemzami M. , Bennani A. , Nolasco G. . ( 2004; ). Genomic variability of Citrus tristeza virus (CTV) isolates introduced into Morocco. . Phytopathol Mediterr 43:, 205–210.
    [Google Scholar]
  33. Lefeuvre P. , Harkins G. W. , Lett J. M. , Briddon R. W. , Chase M. W. , Moury B. , Martin D. P. . ( 2011; ). Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. . PLoS One 6:, e19193. [CrossRef] [PubMed]
    [Google Scholar]
  34. Li H. , Roossinck M. J. . ( 2004; ). Genetic bottlenecks reduce population variation in an experimental RNA virus population. . J Virol 78:, 10582–10587. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lu R. , Folimonov A. , Shintaku M. , Li W. X. , Falk B. W. , Dawson W. O. , Ding S. W. . ( 2004; ). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. . Proc Natl Acad Sci U S A 101:, 15742–15747. [CrossRef] [PubMed]
    [Google Scholar]
  36. Luria S. E. . ( 1951; ). The frequency distribution of spontaneous bacteriophage mutants as evidence for the exponential rate of phage reproduction. . Cold Spring Harb Symp Quant Biol 16:, 463–470.[PubMed] [CrossRef]
    [Google Scholar]
  37. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010; ). rdp3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef] [PubMed]
    [Google Scholar]
  38. Minskaia E. , Hertzig T. , Gorbalenya A. E. , Campanacci V. , Cambillau C. , Canard B. , Ziebuhr J. . ( 2006; ). Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. . Proc Natl Acad Sci U S A 103:, 5108–5113. [CrossRef] [PubMed]
    [Google Scholar]
  39. Moreno P. , Ambrós S. , Albiach-Martí M. R. , Guerri J. , Peña L. . ( 2008; ). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. . Mol Plant Pathol 9:, 251–268. [CrossRef] [PubMed]
    [Google Scholar]
  40. Navas-Castillo J. , Albiach-Martí M. R. , Gowda S. , Hilf M. E. , Garnsey S. M. , Dawson W. O. . ( 1997; ). Kinetics of accumulation of citrus tristeza virus RNAs. . Virology 228:, 92–97. [CrossRef] [PubMed]
    [Google Scholar]
  41. Nolasco G. , Fonseca F. , Silva G. . ( 2008; ). Occurrence of genetic bottlenecks during citrus tristeza virus acquisition by Toxoptera citricida under field conditions. . Arch Virol 153:, 259–271. [CrossRef] [PubMed]
    [Google Scholar]
  42. Nolasco G. , Santos C. , Silva G. , Fonseca F. . ( 2009; ). Development of an asymmetric PCR-ELISA typing method for citrus tristeza virus based on the coat protein gene. . J Virol Methods 155:, 97–108. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pagán I. , Firth C. , Holmes E. C. . ( 2010; ). Phylogenetic analysis reveals rapid evolutionary dynamics in the plant RNA virus genus tobamovirus. . J Mol Evol 71:, 298–307. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ramsden C. , Melo F. L. , Figueiredo L. M. , Holmes E. C. , Zanotto P. M. . VGDN Consortium ( 2008; ). High rates of molecular evolution in hantaviruses. . Mol Biol Evol 25:, 1488–1492. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ramsden C. , Holmes E. C. , Charleston M. A. . ( 2009; ). Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. . Mol Biol Evol 26:, 143–153. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rubio L. , Ayllón M. A. , Kong P. , Fernández A. , Polek M. , Guerri J. , Moreno P. , Falk B. W. . ( 2001; ). Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. . J Virol 75:, 8054–8062. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sacristán S. , Malpica J. M. , Fraile A. , García-Arenal F. . ( 2003; ). Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. . J Virol 77:, 9906–9911. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sanjuán R. , Nebot M. R. , Chirico N. , Mansky L. M. , Belshaw R. . ( 2010; ). Viral mutation rates. . J Virol 84:, 9733–9748. [CrossRef] [PubMed]
    [Google Scholar]
  49. Satyanarayana T. , Gowda S. , Ayllón M. A. , Albiach-Martí M. R. , Rabindran S. , Dawson W. O. . ( 2002; ). The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. . J Virol 76:, 473–483. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sequeira Z. , Nolasco G. . ( 2002; ). Bacterial expressed coat protein: development of a single antiserum for routine detection of Citrus tristeza virus . . Phytopathol Mediterr 41:, 55–62.
    [Google Scholar]
  51. Simmons H. E. , Holmes E. C. , Stephenson A. G. . ( 2008; ). Rapid evolutionary dynamics of zucchini yellow mosaic virus. . J Gen Virol 89:, 1081–1085. [CrossRef] [PubMed]
    [Google Scholar]
  52. Suchard M. A. , Weiss R. E. , Sinsheimer J. S. . ( 2001; ). Bayesian selection of continuous-time Markov chain evolutionary models. . Mol Biol Evol 18:, 1001–1013.[PubMed] [CrossRef]
    [Google Scholar]
  53. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  54. Webber H. J. , Reuther W. , Lawton H. W. . ( 1967; ). History and development of the citrus industry. In The Citrus Industry, vol. I (History, World Distribution, Botany, and Varieties). . Edited by Reuther W. , Webber H. J. , Batchelor L. D. . . Riverside, CA:: Division of Agricultural Sciences, University of California;. http://websites.lib.ucr.edu/agnic/webber/Vol1/Chapter1.htm
  55. Weng Z. , Liu X. , Gowda S. , Barthelson R. A. , Galbraith D. W. , Dawson W. O. , Xiong Z. . ( 2010; ). Extreme genome stability of Citrus tristeza virus. In Abstracts of the XVIII Conference of the IOCV, 7–12 November 2010, Campinas, SP, Brazil, pp. 1–129. . http://revistalaranja.centrodecitricultura.br/edicoes/down.php?idedicao=27&arquivo=v31_3_%2025.pdf
  56. Wu B. , Blanchard-Letort A. , Liu Y. , Zhou G. , Wang X. , Elena S. F. . ( 2011; ). Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV. . PLoS One 6:, e16896. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.036574-0
Loading
/content/journal/jgv/10.1099/vir.0.036574-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error