Molecular evolution of the insect-specific flaviviruses Open Access

Abstract

There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus . We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family . We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.036525-0
2012-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/223.html?itemId=/content/journal/jgv/10.1099/vir.0.036525-0&mimeType=html&fmt=ahah

References

  1. Aaskov J., Buzacott K., Thu H. M., Lowry K., Holmes E. C. 2006; Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236–238 [View Article][PubMed]
    [Google Scholar]
  2. Aranda C., Sánchez-Seco M. P., Cáceres F., Escosa R., Gálvez J. C., Masià M., Marqués E., Ruíz S., Alba A. et al. 2009; Detection and monitoring of mosquito flaviviruses in Spain between 2001 and 2005. Vector Borne Zoonotic Dis 9:171–178 [View Article][PubMed]
    [Google Scholar]
  3. Billoir F., de Chesse R., Tolou H., de Micco P., Gould E. A., de Lamballerie X. 2000; Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 81:781–790
    [Google Scholar]
  4. Bolling B. G., Eisen L., Moore C. G., Blair C. D. 2011; Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am J Trop Med Hyg 85:169–177 [View Article][PubMed]
    [Google Scholar]
  5. Brackney D. E., Scott J. C., Sagawa F., Woodward J. E., Miller N. A., Schilkey F. D., Mudge J., Wilusz J., Olson K. E. other authors 2010; C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4:e856 [View Article][PubMed]
    [Google Scholar]
  6. Calzolari M., Bonilauri P., Bellini R., Caimi M., Defilippo F., Maioli G., Albieri A., Medici A., Veronesi R. other authors 2010; Arboviral survey of mosquitoes in two northern Italian regions in 2007 and 2008. Vector Borne Zoonotic Dis 10:875–884 [View Article][PubMed]
    [Google Scholar]
  7. Cammisa-Parks H., Cisar L. A., Kane A., Stollar V. 1992; The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189:511–524 [CrossRef]
    [Google Scholar]
  8. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 [CrossRef]
    [Google Scholar]
  9. Charleston M. A., Robertson D. L. 2002; Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol 51:528–535 [View Article][PubMed]
    [Google Scholar]
  10. Cook S., Holmes E. C. 2006; A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151:309–325 [View Article][PubMed]
    [Google Scholar]
  11. Cook S., Bennett S. N., Holmes E. C., De Chesse R., Moureau G., de Lamballerie X. 2006; Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87:735–748 [View Article][PubMed]
    [Google Scholar]
  12. Cook S., Moureau G., Harbach R. E., Mukwaya L., Goodger K., Ssenfuka F., Gould E., Holmes E. C., de Lamballerie X. 2009; Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 90:2669–2678 [View Article][PubMed]
    [Google Scholar]
  13. Crabtree M. B., Sang R. C., Stollar V., Dunster L. M., Miller B. R. 2003; Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch Virol 148:1095–1118 [View Article][PubMed]
    [Google Scholar]
  14. Crabtree M. B., Nga P. T., Miller B. R. 2009; Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch Virol 154:857–860 [View Article][PubMed]
    [Google Scholar]
  15. Crochu S., Cook S., Attoui H., Charrel R. N., De Chesse R., Belhouchet M., Lemasson J. J., de Micco P., de Lamballerie X. 2004; Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 85:1971–1980 [View Article][PubMed]
    [Google Scholar]
  16. de Lamballerie X., Crochu S., Billoir F., Neyts J., de Micco P., Holmes E. C., Gould E. A. 2002; Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus . J Gen Virol 83:2443–2454[PubMed]
    [Google Scholar]
  17. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [View Article][PubMed]
    [Google Scholar]
  18. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  19. Farfan-Ale J. A., Loroño-Pino M. A., Garcia-Rejon J. E., Hovav E., Powers A. M., Lin M., Dorman K. S., Platt K. B., Bartholomay L. C. other authors 2009; Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 80:85–95[PubMed]
    [Google Scholar]
  20. Farfan-Ale J. A., Loroño-Pino M. A., Garcia-Rejon J. E., Soto V., Lin M., Staley M., Dorman K. S., Bartholomay L. C., Hovav E., Blitvich B. J. 2010; Detection of flaviviruses and orthobunyaviruses in mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector Borne Zoonotic Dis 10:777–783 [View Article][PubMed]
    [Google Scholar]
  21. Fauquet C. M., Fargette D. 2005; International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64 [View Article][PubMed]
    [Google Scholar]
  22. Firth A. E., Atkins J. F. 2009; A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J 6:14 [View Article][PubMed]
    [Google Scholar]
  23. Firth A. E., Blitvich B. J., Wills N. M., Miller C. L., Atkins J. F. 2010; Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399:153–166 [View Article][PubMed]
    [Google Scholar]
  24. Gaunt M. W., Sall A. A., de Lamballerie X., Falconar A. K., Dzhivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876[PubMed]
    [Google Scholar]
  25. Gould E. A., Moss S. R., Turner S. L. 2004; Evolution and dispersal of encephalitic flaviviruses. Arch Virol Suppl 18:65–84[PubMed]
    [Google Scholar]
  26. Harbach R. E., Kitching I. J. 1998; Phylogeny and classification of the Culicidae (Diptera). Syst Entomol 23:327–370 [CrossRef]
    [Google Scholar]
  27. Hoshino K., Isawa H., Tsuda Y., Yano K., Sasaki T., Yuda M., Takasaki T., Kobayashi M., Sawabe K. 2007; Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359:405–414 [View Article][PubMed]
    [Google Scholar]
  28. Hoshino K., Isawa H., Tsuda Y., Sawabe K., Kobayashi M. 2009; Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 391:119–129 [View Article][PubMed]
    [Google Scholar]
  29. Huelsenbeck J. P., Ronquist F. 2001; MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  30. Kihara Y., Satho T., Eshita Y., Sakai K., Kotaki A., Takasaki T., Rongsriyam Y., Komalamisra N., Srisawat R., Lapcharoen P. 2007; Rapid determination of viral RNA sequences in mosquitoes collected in the field. J Virol Methods 146:372–374 [View Article][PubMed]
    [Google Scholar]
  31. Kim D. Y., Guzman H., Bueno R. Jr, Dennett J. A., Auguste A. J., Carrington C. V., Popov V. L., Weaver S. C., Beasley D. W., Tesh R. B. 2009; Characterization of Culex flavivirus (Flaviviridae) strains isolated from mosquitoes in the United States and Trinidad. Virology 386:154–159 [View Article][PubMed]
    [Google Scholar]
  32. Kuno G. 2007; Host range specificity of flaviviruses: correlation with in vitro replication. J Med Entomol 44:93–101 [View Article][PubMed]
    [Google Scholar]
  33. Kuno G., Chang G. J. 2005; Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637 [View Article][PubMed]
    [Google Scholar]
  34. Kuno G., Chang G. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus . J Virol 72:73–83[PubMed]
    [Google Scholar]
  35. Lobo F. P., Mota B. E., Pena S. D., Azevedo V., Macedo A. M., Tauch A., Machado C. R., Franco G. R. 2009; Virus–host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 4:e6282 [View Article][PubMed]
    [Google Scholar]
  36. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. 2010; rdp3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463 [View Article][PubMed]
    [Google Scholar]
  37. Morales-Betoulle M. E., Monzón Pineda M. L., Sosa S. M., Panella N., López M. R., Cordón-Rosales C., Komar N., Powers A., Johnson B. W. 2008; Culex flavivirus isolates from mosquitoes in Guatemala. J Med Entomol 45:1187–1190 [View Article][PubMed]
    [Google Scholar]
  38. Moureau G., Ninove L., Izri A., Cook S., de Lamballerie X., Charrel R. N. 2010; Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis 10:195–197 [View Article][PubMed]
    [Google Scholar]
  39. Pabbaraju K., Ho K. C., Wong S., Fox J. D., Kaplen B., Tyler S., Drebot M., Tilley P. A. 2009; Surveillance of mosquito-borne viruses in Alberta using reverse transcription polymerase chain reaction with generic primers. J Med Entomol 46:640–648 [View Article][PubMed]
    [Google Scholar]
  40. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  41. Pybus O. G., Rambaut A., Holmes E. C., Harvey P. H. 2002; New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol 51:881–888 [View Article][PubMed]
    [Google Scholar]
  42. Ramsden C., Holmes E. C., Charleston M. A. 2009; Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 26:143–153 [View Article][PubMed]
    [Google Scholar]
  43. Reinert J. F., Harbach R. E., Kitching I. J. 2009; Phylogeny and classification of tribe Aedini (Diptera: Culicidae). Zool J Linn Soc 157:700–794 [View Article]
    [Google Scholar]
  44. Roehrig J. T., Hunt A. R., Johnson A. J., Hawkes R. A. 1989; Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology 171:49–60 [CrossRef]
    [Google Scholar]
  45. Roiz D., Vázquez A., Seco M. P., Tenorio A., Rizzoli A. 2009; Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy. Virol J 6:93 [View Article][PubMed]
    [Google Scholar]
  46. Rossi G. C., Harbach R. E. 2008; Phytotelmatomyia, a new neotropical subgenus of Culex (Diptera: Culicidae). Zootaxa 1879:1–17
    [Google Scholar]
  47. Sánchez-Seco M. P., Vázquez A., Collao X., Hernández L., Aranda C., Ruiz S., Escosa R., Marqués E., Bustillo M. A. other authors 2010; Surveillance of arboviruses in Spanish wetlands: detection of new flavi- and phleboviruses. Vector Borne Zoonotic Dis 10:203–206 [View Article][PubMed]
    [Google Scholar]
  48. Sang R. C., Gichogo A., Gachoya J., Dunster M. D., Ofula V., Hunt A. R., Crabtree M. B., Miller B. R., Dunster L. M. 2003; Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148:1085–1093 [View Article][PubMed]
    [Google Scholar]
  49. Scott J. C., Brackney D. E., Campbell C. L., Bondu-Hawkins V., Hjelle B., Ebel G. D., Olson K. E., Blair C. D. 2010; Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 4:e848 [View Article][PubMed]
    [Google Scholar]
  50. St John O. 2007 Phylogeny of the genus Culex (Diptera: Culicidae). MRes thesis, Imperial College, London, UK
  51. Swofford D. L. 2003; paup*: Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer Associates;
  52. Stollar V., Thomas V. L. 1975; An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64:367–377 [CrossRef]
    [Google Scholar]
  53. Taucher C., Berger A., Mandl C. W. 2010; A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 84:599–611 [View Article][PubMed]
    [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  55. Tolou H. J., Couissinier-Paris P., Durand J. P., Mercier V., de Pina J. J., de Micco P., Billoir F., Charrel R. N., de Lamballerie X. 2001; Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J Gen Virol 82:1283–1290[PubMed]
    [Google Scholar]
  56. Twiddy S. S., Holmes E. C. 2003; The extent of homologous recombination in members of the genus Flavivirus . J Gen Virol 84:429–440 [View Article][PubMed]
    [Google Scholar]
  57. Uzcategui N. Y., Camacho D., Comach G., Cuello de Uzcategui R., Holmes E. C., Gould E. A. 2001; Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J Gen Virol 82:2945–2953[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.036525-0
Loading
/content/journal/jgv/10.1099/vir.0.036525-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed