1887

Abstract

In order to resolve the location and activity of submicroscopic viruses in living cells, viral proteins are often fused to fluorescent proteins (FPs) and visualized by microscopy. In this study, we describe the fusion of FPs to three proteins of pseudorabies virus (PRV) that allowed imaging of capsids in living cells. Included in this study are the first recombinant PRV strains expressing FP–pUL25 fusions based on a design applied to herpes simplex virus type 1 by Homa and colleagues. The properties of each reporter virus were compared in both and infection models. PRV strains expressing FP–pUL25 and FP–pUL36 preserved wild-type properties better than traditional FP–pUL35 isolates in assays of plaque size and virulence in mice. The utility of these strains in studies of axon transport, nuclear dynamics and viral particle composition are documented.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.036145-0
2012-01-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/124.html?itemId=/content/journal/jgv/10.1099/vir.0.036145-0&mimeType=html&fmt=ahah

References

  1. Antinone S. E., Smith G. A.. ( 2010;). Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. . J Virol 84:, 1504–1512. [CrossRef][PubMed]
    [Google Scholar]
  2. Antinone S. E., Shubeita G. T., Coller K. E., Lee J. I., Haverlock-Moyns S., Gross S. P., Smith G. A.. ( 2006;). The herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. . J Virol 80:, 5494–5498. [CrossRef][PubMed]
    [Google Scholar]
  3. Cockrell S. K., Sanchez M. E., Erazo A., Homa F. L.. ( 2009;). Role of the UL25 protein in herpes simplex virus DNA encapsidation. . J Virol 83:, 47–57. [CrossRef][PubMed]
    [Google Scholar]
  4. Coller K. E., Lee J. I., Ueda A., Smith G. A.. ( 2007;). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. . J Virol 81:, 11790–11797. [CrossRef][PubMed]
    [Google Scholar]
  5. Conway J. F., Cockrell S. K., Copeland A. M., Newcomb W. W., Brown J. C., Homa F. L.. ( 2010;). Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. . J Mol Biol 397:, 575–586. [CrossRef][PubMed]
    [Google Scholar]
  6. Demmin G. L., Clase A. C., Randall J. A., Enquist L. W., Banfield B. W.. ( 2001;). Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. . J Virol 75:, 10856–10869. [CrossRef][PubMed]
    [Google Scholar]
  7. Desai P. J.. ( 2000;). A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. . J Virol 74:, 11608–11618. [CrossRef][PubMed]
    [Google Scholar]
  8. Desai P., Person S.. ( 1998;). Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. . J Virol 72:, 7563–7568.[PubMed]
    [Google Scholar]
  9. Forest T., Barnard S., Baines J. D.. ( 2005;). Active intranuclear movement of herpesvirus capsids. . Nat Cell Biol 7:, 429–431. [CrossRef][PubMed]
    [Google Scholar]
  10. Fossum E., Friedel C. C., Rajagopala S. V., Titz B., Baiker A., Schmidt T., Kraus T., Stellberger T., Rutenberg C.. & other authors ( 2009;). Evolutionarily conserved herpesviral protein interaction networks. . PLoS Pathog 5:, e1000570. [CrossRef][PubMed]
    [Google Scholar]
  11. Frampton A. R. Jr, Uchida H., von Einem J., Goins W. F., Grandi P., Cohen J. B., Osterrieder N., Glorioso J. C.. ( 2010;). Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. . In Vet Microbiol, 141, 12–21. [CrossRef]
    [Google Scholar]
  12. Fuchs W., Klupp B. G., Granzow H., Mettenleiter T. C.. ( 2004;). Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. . J Virol 78:, 11879–11889. [CrossRef][PubMed]
    [Google Scholar]
  13. Gibson W., Roizman B.. ( 1972;). Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. . J Virol 10:, 1044–1052.[PubMed]
    [Google Scholar]
  14. Granzow H., Klupp B. G., Mettenleiter T. C.. ( 2005;). Entry of pseudorabies virus: an immunogold-labeling study. . J Virol 79:, 3200–3205. [CrossRef][PubMed]
    [Google Scholar]
  15. Heine J. W., Honess R. W., Cassai E., Roizman B.. ( 1974;). Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. . J Virol 14:, 640–651.[PubMed]
    [Google Scholar]
  16. Knipe D. M., Batterson W., Nosal C., Roizman B., Buchan A.. ( 1981;). Molecular genetics of herpes simplex virus. VI. Characterization of a temperature-sensitive mutant defective in the expression of all early viral gene products. . J Virol 38:, 539–547.[PubMed]
    [Google Scholar]
  17. Krautwald M., Maresch C., Klupp B. G., Fuchs W., Mettenleiter T. C.. ( 2008;). Deletion or green fluorescent protein tagging of the pUL35 capsid component of pseudorabies virus impairs virus replication in cell culture and neuroinvasion in mice. . J Gen Virol 89:, 1346–1351. [CrossRef][PubMed]
    [Google Scholar]
  18. Luxton G. W., Haverlock S., Coller K. E., Antinone S. E., Pincetic A., Smith G. A.. ( 2005;). Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. . Proc Natl Acad Sci U S A 102:, 5832–5837. [CrossRef][PubMed]
    [Google Scholar]
  19. McNab A. R., Desai P., Person S., Roof L. L., Thomsen D. R., Newcomb W. W., Brown J. C., Homa F. L.. ( 1998;). The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. . J Virol 72:, 1060–1070.[PubMed]
    [Google Scholar]
  20. McNabb D. S., Courtney R. J.. ( 1992;). Characterization of the large tegument protein (ICP1/2) of herpes simplex virus type 1. . Virology 190:, 221–232. [CrossRef][PubMed]
    [Google Scholar]
  21. Newcomb W. W., Brown J. C.. ( 2010;). Structure and capsid association of the herpesvirus large tegument protein UL36. . J Virol 84:, 9408–9414. [CrossRef][PubMed]
    [Google Scholar]
  22. Newcomb W. W., Homa F. L., Brown J. C.. ( 2006;). Herpes simplex virus capsid structure: DNA packaging protein UL25 is located on the external surface of the capsid near the vertices. . J Virol 80:, 6286–6294. [CrossRef][PubMed]
    [Google Scholar]
  23. O’Hara M., Rixon F. J., Stow N. D., Murray J., Murphy M., Preston V. G.. ( 2010;). Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. . J Virol 84:, 4252–4263. [CrossRef][PubMed]
    [Google Scholar]
  24. Pasdeloup D., Blondel D., Isidro A. L., Rixon F. J.. ( 2009;). Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. . J Virol 83:, 6610–6623. [CrossRef][PubMed]
    [Google Scholar]
  25. Shaner N. C., Campbell R. E., Steinbach P. A., Giepmans B. N. G., Palmer A. E., Tsien R. Y.. ( 2004;). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. . Nat Biotechnol 22:, 1567–1572. [CrossRef][PubMed]
    [Google Scholar]
  26. Sheaffer A. K., Newcomb W. W., Gao M., Yu D., Weller S. K., Brown J. C., Tenney D. J.. ( 2001;). Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. . J Virol 75:, 687–698. [CrossRef][PubMed]
    [Google Scholar]
  27. Smith G. A., Banfield B. W.. ( 2006;). The development and use of alpha-herpesviruses-expressing fluorescent proteins. . In Alpha Herpesviruses: Molecular and Cell Biology, pp. 205–217. Edited by Sandri-Golden R. M... UK:: Caister Academic Press;.
    [Google Scholar]
  28. Smith G. A., Enquist L. W.. ( 1999;). Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. . J Virol 73:, 6405–6414.[PubMed]
    [Google Scholar]
  29. Smith G. A., Enquist L. W.. ( 2000;). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. . Proc Natl Acad Sci U S A 97:, 4873–4878. [CrossRef][PubMed]
    [Google Scholar]
  30. Smith B. N., Banfield B. W., Smeraski C. A., Wilcox C. L., Dudek F. E., Enquist L. W., Pickard G. E.. ( 2000;). Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. . Proc Natl Acad Sci U S A 97:, 9264–9269. [CrossRef][PubMed]
    [Google Scholar]
  31. Smith G. A., Gross S. P., Enquist L. W.. ( 2001;). Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. . Proc Natl Acad Sci U S A 98:, 3466–3470. [CrossRef][PubMed]
    [Google Scholar]
  32. Smith G. A., Pomeranz L., Gross S. P., Enquist L. W.. ( 2004;). Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. . Proc Natl Acad Sci U S A 101:, 16034–16039. [CrossRef][PubMed]
    [Google Scholar]
  33. Thurlow J. K., Rixon F. J., Murphy M., Targett-Adams P., Hughes M., Preston V. G.. ( 2005;). The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. . J Virol 79:, 150–158. [CrossRef][PubMed]
    [Google Scholar]
  34. Toropova K., Huffman J. B., Homa F. L., Conway J. F.. ( 2011;). The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. . J Virol 85:, 7513–7522. [CrossRef][PubMed]
    [Google Scholar]
  35. Trus B. L., Newcomb W. W., Cheng N., Cardone G., Marekov L., Homa F. L., Brown J. C., Steven A. C.. ( 2007;). Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. . Mol Cell 26:, 479–489. [CrossRef][PubMed]
    [Google Scholar]
  36. Uetz P., Dong Y. A., Zeretzke C., Atzler C., Baiker A., Berger B., Rajagopala S. V., Roupelieva M., Rose D.. & other authors ( 2006;). Herpesviral protein networks and their interaction with the human proteome. . Science 311:, 239–242. [CrossRef][PubMed]
    [Google Scholar]
  37. Ward P. L., Ogle W. O., Roizman B.. ( 1996;). Assemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. . J Virol 70:, 4623–4631.[PubMed]
    [Google Scholar]
  38. Wingfield P. T., Stahl S. J., Thomsen D. R., Homa F. L., Booy F. P., Trus B. L., Steven A. C.. ( 1997;). Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. . J Virol 71:, 8955–8961.[PubMed]
    [Google Scholar]
  39. Wolfstein A., Nagel C. H., Radtke K., Döhner K., Allan V. J., Sodeik B.. ( 2006;). The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. . Traffic 7:, 227–237. [CrossRef][PubMed]
    [Google Scholar]
  40. Zhou Z. H., He J., Jakana J., Tatman J. D., Rixon F. J., Chiu W.. ( 1995;). Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. . Nat Struct Biol 2:, 1026–1030. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.036145-0
Loading
/content/journal/jgv/10.1099/vir.0.036145-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error