1887

Abstract

The viral haemagglutinin (HA) and the viral polymerase complex determine the replication fitness of a highly virulent variant of influenza A virus strain A/PR/8/34 (designated hvPR8) and its high pathogenicity in mice. We report here that the HA of the hvPR8 differs from the HA of a low virulent strain (lvPR8) by the efficiency of receptor binding and membrane fusion. hvPR8 bound to 2,6-linked as well as 2,3-linked sialic acid-containing receptors, whereas lvPR8 bound exclusively to 2,3-linked sialic acids with high avidity. Remarkably, hvPR8 infected its target cells faster than lvPR8 and tolerated an elevated pH for efficient membrane fusion. In spite of these differences, both viruses targeted type II but not type I pneumocytes in the lung of infected mice. The HA of hvPR8 differs from that of lvPR8 by 16 aa substitutions and one insertion. Mutational analyses revealed that amino acid at HA position 190 (H3 numbering) primarily determined the specificity of receptor binding, while the insertion at position 133 influenced the avidity of receptor binding. Both amino acid positions also strongly influenced viral virulence. Furthermore, leucine at position 78 and glutamine at position 354 were critical determinants of increased fusion activity and virulence of hvPR8. Our data suggest that the HA of hvPR8 enhances virulence by mediating optimal receptor binding and membrane fusion thereby promoting rapid and efficient viral entry into host cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035782-0
2012-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/970.html?itemId=/content/journal/jgv/10.1099/vir.0.035782-0&mimeType=html&fmt=ahah

References

  1. Bertram S. , Glowacka I. , Blazejewska P. , Soilleux E. , Allen P. , Danisch S. , Steffen I. , Choi S. Y. , Park Y. . & other authors ( 2010; ). TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. . J Virol 84:, 10016–10025. [CrossRef] [PubMed]
    [Google Scholar]
  2. Böttcher E. , Matrosovich T. , Beyerle M. , Klenk H. D. , Garten W. , Matrosovich M. . ( 2006; ). Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. . J Virol 80:, 9896–9898. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brown E. G. , Liu H. , Kit L. C. , Baird S. , Nesrallah M. . ( 2001; ). Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. . Proc Natl Acad Sci U S A 98:, 6883–6888. [CrossRef] [PubMed]
    [Google Scholar]
  4. Couceiro J. N. , Paulson J. C. , Baum L. G. . ( 1993; ). Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. . Virus Res 29:, 155–165. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cross K. J. , Langley W. A. , Russell R. J. , Skehel J. J. , Steinhauer D. A. . ( 2009; ). Composition and functions of the influenza fusion peptide. . Protein Pept Lett 16:, 766–778. [CrossRef] [PubMed]
    [Google Scholar]
  6. Daniels R. S. , Downie J. C. , Hay A. J. , Knossow M. , Skehel J. J. , Wang M. L. , Wiley D. C. . ( 1985; ). Fusion mutants of the influenza virus hemagglutinin glycoprotein. . Cell 40:, 431–439. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gagneux P. , Cheriyan M. , Hurtado-Ziola N. , van der Linden E. C. , Anderson D. , McClure H. , Varki A. , Varki N. M. . ( 2003; ). Human-specific regulation of alpha 2-6-linked sialic acids. . J Biol Chem 278:, 48245–48250. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gamblin S. J. , Skehel J. J. . ( 2010; ). Influenza hemagglutinin and neuraminidase membrane glycoproteins. . J Biol Chem 285:, 28403–28409. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gamblin S. J. , Haire L. F. , Russell R. J. , Stevens D. J. , Xiao B. , Ha Y. , Vasisht N. , Steinhauer D. A. , Daniels R. S. . & other authors ( 2004; ). The structure and receptor binding properties of the 1918 influenza hemagglutinin. . Science 303:, 1838–1842. [CrossRef] [PubMed]
    [Google Scholar]
  10. Glaser L. , Stevens J. , Zamarin D. , Wilson I. A. , García-Sastre A. , Tumpey T. M. , Basler C. F. , Taubenberger J. K. , Palese P. . ( 2005; ). A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. . J Virol 79:, 11533–11536. [CrossRef] [PubMed]
    [Google Scholar]
  11. Glaser L. , Conenello G. , Paulson J. , Palese P. . ( 2007; ). Effective replication of human influenza viruses in mice lacking a major alpha2,6 sialyltransferase. . Virus Res 126:, 9–18. [CrossRef] [PubMed]
    [Google Scholar]
  12. Grimm D. , Staeheli P. , Hufbauer M. , Koerner I. , Martínez-Sobrido L. , Solórzano A. , García-Sastre A. , Haller O. , Kochs G. . ( 2007; ). Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. . Proc Natl Acad Sci U S A 104:, 6806–6811. [CrossRef] [PubMed]
    [Google Scholar]
  13. Haller O. . ( 1981; ). Inborn resistance of mice to orthomyxoviruses. . In Current Topics in Microbiology and Immunology. 92:, 25–52.
    [Google Scholar]
  14. Haller O. , Arnheiter H. , Gresser I. , Lindenmann J. . ( 1979; ). Genetically determined, interferon-dependent resistance to influenza virus in mice. . J Exp Med 149:, 601–612. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hartley C. A. , Reading P. C. , Ward A. C. , Anders E. M. . ( 1997; ). Changes in the hemagglutinin molecule of influenza type A (H3N2) virus associated with increased virulence for mice. . Arch Virol 142:, 75–88. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ibricevic A. , Pekosz A. , Walter M. J. , Newby C. , Battaile J. T. , Brown E. G. , Holtzman M. J. , Brody S. L. . ( 2006; ). Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. . J Virol 80:, 7469–7480. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ilyushina N. A. , Govorkova E. A. , Russell C. J. , Hoffmann E. , Webster R. G. . ( 2007; ). Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. . J Gen Virol 88:, 1266–1274. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ilyushina N. A. , Khalenkov A. M. , Seiler J. P. , Forrest H. L. , Bovin N. V. , Marjuki H. , Barman S. , Webster R. G. , Webby R. J. . ( 2010; ). Adaptation of pandemic H1N1 influenza viruses in mice. . J Virol 84:, 8607–8616. [CrossRef] [PubMed]
    [Google Scholar]
  19. Keleta L. , Ibricevic A. , Bovin N. V. , Brody S. L. , Brown E. G. . ( 2008; ). Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. . J Virol 82:, 11599–11608. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lamblin G. , Degroote S. , Perini J.-M. , Delmotte P. , Scharfman A. , Davril M. , Lo-Guidice J.-M. , Houdret N. , Dumur V. . & other authors ( 2001; ). Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis. . Glycoconj J 18:, 661–684. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lin Y. P. , Wharton S. A. , Martín J. , Skehel J. J. , Wiley D. C. , Steinhauer D. A. . ( 1997; ). Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. . Virology 233:, 402–410. [CrossRef] [PubMed]
    [Google Scholar]
  22. Matlin K. S. , Reggio H. , Helenius A. , Simons K. . ( 1981; ). Infectious entry pathway of influenza virus in a canine kidney cell line. . J Cell Biol 91:, 601–613. [CrossRef] [PubMed]
    [Google Scholar]
  23. Matrosovich M. , Matrosovich T. , Carr J. , Roberts N. A. , Klenk H. D. . ( 2003; ). Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. . J Virol 77:, 8418–8425. [CrossRef] [PubMed]
    [Google Scholar]
  24. Neumann G. , Noda T. , Kawaoka Y. . ( 2009; ). Emergence and pandemic potential of swine-origin H1N1 influenza virus. . Nature 459:, 931–939. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ning Z. Y. , Luo M. Y. , Qi W. B. , Yu B. , Jiao P. R. , Liao M. . ( 2009; ). Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry. . Vet Res Commun 33:, 895–903. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ohuchi M. , Asaoka N. , Sakai T. , Ohuchi R. . ( 2006; ). Roles of neuraminidase in the initial stage of influenza virus infection. . Microbes Infect 8:, 1287–1293. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pekosz A. , Newby C. , Bose P. S. , Lutz A. . ( 2009; ). Sialic acid recognition is a key determinant of influenza A virus tropism in murine trachea epithelial cell cultures. . Virology 386:, 61–67. [CrossRef] [PubMed]
    [Google Scholar]
  28. Qi L. , Kash J. C. , Dugan V. G. , Wang R. , Jin G. , Cunningham R. E. , Taubenberger J. K. . ( 2009; ). Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis for mice. . J Virol 83:, 3754–3761. [CrossRef] [PubMed]
    [Google Scholar]
  29. Quinlivan M. , Zamarin D. , García-Sastre A. , Cullinane A. , Chambers T. , Palese P. . ( 2005; ). Attenuation of equine influenza viruses through truncations of the NS1 protein. . J Virol 79:, 8431–8439. [CrossRef] [PubMed]
    [Google Scholar]
  30. Reading P. C. , Bozza S. , Gilbertson B. , Tate M. , Moretti S. , Job E. R. , Crouch E. C. , Brooks A. G. , Brown L. E. . & other authors ( 2008; ). Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. . J Immunol 180:, 3391–3398.[PubMed] [CrossRef]
    [Google Scholar]
  31. Reed L. J. , Muench H. . ( 1938; ). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  32. Reed M. L. , Yen H. L. , DuBois R. M. , Bridges O. A. , Salomon R. , Webster R. G. , Russell C. J. . ( 2009; ). Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. . J Virol 83:, 3568–3580. [CrossRef] [PubMed]
    [Google Scholar]
  33. Reed M. L. , Bridges O. A. , Seiler P. , Kim J. K. , Yen H. L. , Salomon R. , Govorkova E. A. , Webster R. G. , Russell C. J. . ( 2010; ). The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. . J Virol 84:, 1527–1535. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rogers G. N. , D’Souza B. L. . ( 1989; ). Receptor binding properties of human and animal H1 influenza virus isolates. . Virology 173:, 317–322. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rolling T. , Koerner I. , Zimmermann P. , Holz K. , Haller O. , Staeheli P. , Kochs G. . ( 2009; ). Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. . J Virol 83:, 6673–6680. [CrossRef] [PubMed]
    [Google Scholar]
  36. Skehel J. J. , Wiley D. C. . ( 2000; ). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. . Annu Rev Biochem 69:, 531–569. [CrossRef] [PubMed]
    [Google Scholar]
  37. Smeenk C. A. , Wright K. E. , Burns B. F. , Thaker A. J. , Brown E. G. . ( 1996; ). Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis. . Virus Res 44:, 79–95. [CrossRef] [PubMed]
    [Google Scholar]
  38. Staeheli P. , Dreiding P. , Haller O. , Lindenmann J. . ( 1985; ). Polyclonal and monoclonal antibodies to the interferon-inducible protein Mx of influenza virus-resistant mice. . J Biol Chem 260:, 1821–1825.[PubMed]
    [Google Scholar]
  39. Stevens J. , Corper A. L. , Basler C. F. , Taubenberger J. K. , Palese P. , Wilson I. A. . ( 2004; ). Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. . Science 303:, 1866–1870. [CrossRef] [PubMed]
    [Google Scholar]
  40. Su Y. , Yang H. , Zhang B. , Qi X. , Tien P. . ( 2008; ). A dual reporter gene based system to quantitate the cell fusion of avian influenza virus H5N1. . Biotechnol Lett 30:, 73–79. [CrossRef] [PubMed]
    [Google Scholar]
  41. Suzuki Y. , Nagao Y. , Kato H. , Suzuki T. , Matsumoto M. , Murayama J. . ( 1987; ). The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains. . Biochim Biophys Acta 903:, 417–424. [CrossRef] [PubMed]
    [Google Scholar]
  42. Thoennes S. , Li Z. N. , Lee B. J. , Langley W. A. , Skehel J. J. , Russell R. J. , Steinhauer D. A. . ( 2008; ). Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. . Virology 370:, 403–414. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tumpey T. M. , Maines T. R. , Van Hoeven N. , Glaser L. , Solórzano A. , Pappas C. , Cox N. J. , Swayne D. E. , Palese P. . & other authors ( 2007; ). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. . Science 315:, 655–659. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wagner R. , Matrosovich M. , Klenk H. D. . ( 2002; ). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. . Rev Med Virol 12:, 159–166. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ward A. C. . ( 1997; ). Virulence of influenza A virus for mouse lung. . Virus Genes 14:, 187–194. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yoshimura A. , Ohnishi S. . ( 1984; ). Uncoating of influenza virus in endosomes. . J Virol 51:, 497–504.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.035782-0
Loading
/content/journal/jgv/10.1099/vir.0.035782-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error