1887

Abstract

Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples) or for all four capsid proteins (P1, seven representative samples) of the serotype A FMD viruses circulating in Pakistan and Afghanistan were determined. Phylogenetic analysis of the foot-and-mouth disease virus (FMDV) VP1-coding sequences from these countries collected between 2002 and 2009 revealed the presence of at least four lineages within two distinct genotypes, all belonging to the Asia topotype, within serotype A. The predominant lineage observed was A-Iran05 but three other lineages (a new one is named here A-Pak09) were also identified. The A-Iran05 lineage is still evolving as revealed by the presence of seven distinct variants, the dominant being the A-Iran05 and A-Iran05 sublineages. The rate of evolution of the A-Iran05 lineage was found to be about 1.2×10 substitutions per nucleotide per year. This high rate of change is consistent with the rapid appearance of new variants of FMDV serotype A in the region. The A22/Iraq FMDV vaccine is antigenically distinct from the A-Iran05 viruses. Mapping of the amino acid changes between the capsid proteins of the A22/Iraq vaccine strain and the A-Iran05 viruses onto the A22/Iraq capsid structure identified candidate amino acid substitutions, exposed on the virus surface, which may explain this antigenic difference.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035626-0
2011-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2849.html?itemId=/content/journal/jgv/10.1099/vir.0.035626-0&mimeType=html&fmt=ahah

References

  1. Alexandersen S. , Mowat N. . ( 2005; ). Foot-and-mouth disease: host range and pathogenesis. . Curr Top Microbiol Immunol 288:, 9–42. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bachrach H. L. . ( 1968; ). Foot-and-mouth disease. . Annu Rev Microbiol 22:, 201–244. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balding D. J. , Bishop D. J. , Cannings C. . (editors) ( 2007; ). Handbook of Statistical Genetics, , 3rd edn., vol. 1. England, UK:: John Wiley & Sons;. [CrossRef]
    [Google Scholar]
  4. Balinda S. N. , Sangula A. K. , Heller R. , Muwanika V. B. , Belsham G. J. , Masembe C. , Siegismund H. R. . ( 2010; ). Diversity and transboundary mobility of serotype O foot-and-mouth disease virus in East Africa: implications for vaccination policies. . Infect Genet Evol 10:, 1058–1065. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bastos A. D. , Haydon D. T. , Sangaré O. , Boshoff C. I. , Edrich J. L. , Thomson G. R. . ( 2003; ). The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. . J Gen Virol 84:, 1595–1606. [CrossRef] [PubMed]
    [Google Scholar]
  6. Beck E. , Strohmaier K. . ( 1987; ). Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination. . J Virol 61:, 1621–1629.[PubMed]
    [Google Scholar]
  7. Belsham G. J. . ( 2005; ). Translation and replication of FMDV RNA. . Curr Top Microbiol Immunol 288:, 43–70. [CrossRef] [PubMed]
    [Google Scholar]
  8. Belsham G. J. , Jamal S. M. , Tjørnehøj K. , Bøtner A. . ( 2011; ). Rescue of foot-and-mouth disease viruses that are pathogenic for cattle from preserved viral RNA samples. . PLoS ONE 6:, e14621. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bolwell C. , Clarke B. E. , Parry N. R. , Ouldridge E. J. , Brown F. , Rowlands D. J. . ( 1989; ). Epitope mapping of foot-and-mouth disease virus with neutralizing monoclonal antibodies. . J Gen Virol 70:, 59–68. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bolwell C. , Parry N. R. , Rowlands D. J. . ( 1992; ). Comparison between in vitro neutralization titres and in vivo protection against homologous and heterologous challenge induced by vaccines prepared from two serologically distinct variants of foot-and-mouth disease virus, serotype A22. . J Gen Virol 73:, 727–731. [CrossRef] [PubMed]
    [Google Scholar]
  11. Carrillo C. , Tulman E. R. , Delhon G. , Lu Z. , Carreno A. , Vagnozzi A. , Kutish G. F. , Rock D. L. . ( 2005; ). Comparative genomics of foot-and-mouth disease virus. . J Virol 79:, 6487–6504. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cooke J. N. , Westover K. M. . ( 2008; ). Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): a comprehensive statistical analysis. . Infect Genet Evol 8:, 855–863. [CrossRef] [PubMed]
    [Google Scholar]
  13. Curry S. , Fry E. , Blakemore W. , Abu-Ghazaleh R. , Jackson T. , King A. , Lea S. , Newman J. , Rowlands D. , Stuart D. . ( 1996; ). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. . Structure 4:, 135–145. [CrossRef] [PubMed]
    [Google Scholar]
  14. Delano W. L. . ( 2002; ). The PyMOL Molecular Graphics System. San Carlos, CA, USA:: DeLano Scientific;.
    [Google Scholar]
  15. Domingo E. , Escarmís C. , Baranowski E. , Ruiz-Jarabo C. M. , Carrillo E. , Núñez J. I. , Sobrino F. . ( 2003; ). Evolution of foot-and-mouth disease virus. . Virus Res 91:, 47–63. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dopazo J. , Sobrino F. , Palma E. L. , Domingo E. , Moya A. . ( 1988; ). Gene encoding capsid protein VP1 of foot-and-mouth disease virus: a quasispecies model of molecular evolution. . Proc Natl Acad Sci U S A 85:, 6811–6815. [CrossRef] [PubMed]
    [Google Scholar]
  17. Drummond A. J. , Rambaut A. . ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  18. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  19. Fox G. , Parry N. R. , Barnett P. V. , McGinn B. , Rowlands D. J. , Brown F. . ( 1989; ). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). . J Gen Virol 70:, 625–637. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fry E. E. , Newman J. W. , Curry S. , Najjam S. , Jackson T. , Blakemore W. , Lea S. M. , Miller L. , Burman A. et al. & other authors ( 2005; ). Structure of foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. . J Gen Virol 86:, 1909–1920. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gebauer F. , de la Torre J. C. , Gomes I. , Mateu M. G. , Barahona H. , Tiraboschi B. , Bergmann I. , de Mello P. A. , Domingo E. . ( 1988; ). Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. . J Virol 62:, 2041–2049.[PubMed]
    [Google Scholar]
  22. Haydon D. T. , Bastos A. D. , Knowles N. J. , Samuel A. R. . ( 2001; ). Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. . Genetics 157:, 7–15.[PubMed]
    [Google Scholar]
  23. Hemadri D. , Tosh C. , Sanyal A. , Venkataramanan R. . ( 2002; ). Emergence of a new strain of type O foot-and-mouth disease virus: its phylogenetic and evolutionary relationship with the PanAsia pandemic strain. . Virus Genes 25:, 23–34. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jackson T. , Sharma A. , Ghazaleh R. A. , Blakemore W. E. , Ellard F. M. , Simmons D. L. , Newman J. W. , Stuart D. I. , King A. M. . ( 1997; ). Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin α. : (v) β3 in vitro . . J Virol 71:, 8357–8361.[PubMed]
    [Google Scholar]
  25. Jamal S. M. , Ahmed S. , Hussain M. , Ali Q. . ( 2010; ). Status of foot-and-mouth disease in Pakistan. . Arch Virol 155:, 1487–1491. [CrossRef] [PubMed]
    [Google Scholar]
  26. Jamal S. M. , Ferrari G. , Ahmed S. , Normann P. , Belsham G. J. . & other authors ( 2011a; ). Genetic diversity of foot-and-mouth disease virus serotype O in Pakistan and Afghanistan, 1997–2009. . Infect Genet Evol 11:, 1229–1238. [CrossRef] [PubMed]
    [Google Scholar]
  27. Jamal S. M. , Ferrari G. , Ahmed S. , Normann P. , Belsham G. J. . ( 2011b; ). Molecular characterization of serotype Asia-1 foot-and-mouth disease viruses in Pakistan and Afghanistan; emergence of a new genetic Group and evidence for a novel recombinant virus. . Infect Genet Evol [CrossRef] [PubMed]
    [Google Scholar]
  28. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kitching R. P. . ( 2005; ). Global epidemiology and prospects for control of foot-and-mouth disease. . Curr Top Microbiol Immunol 288:, 133–148. [CrossRef] [PubMed]
    [Google Scholar]
  30. Klein J. , Parlak U. , Ozyörük F. , Christensen L. S. . ( 2006; ). The molecular epidemiology of foot-and-mouth disease virus serotypes A and O from 1998 to 2004 in Turkey. . BMC Vet Res 2:, 35. [CrossRef] [PubMed]
    [Google Scholar]
  31. Klein J. , Hussain M. , Ahmad M. , Normann P. , Afzal M. , Alexandersen S. . ( 2007; ). Genetic characterisation of the recent foot-and-mouth disease virus subtype A/IRN/2005. . Virol J 4:, 122. [CrossRef] [PubMed]
    [Google Scholar]
  32. Knowles N. J. , Samuel A. R. . ( 2003; ). Molecular epidemiology of foot-and-mouth disease virus. . Virus Res 91:, 65–80. [CrossRef] [PubMed]
    [Google Scholar]
  33. Knowles N. J. , Samuel A. R. , Davies P. R. , Midgley R. J. , Valarcher J.-F. . ( 2005; ). Pandemic strain of foot-and-mouth disease virus serotype O. . Emerg Infect Dis 11:, 1887–1893.[PubMed] [CrossRef]
    [Google Scholar]
  34. Knowles N. J. , Wadsworth J. , Reid S. M. , Swabey K. G. , El-Kholy A. A. , Abd El-Rahman A. O. , Soliman H. M. , Ebert K. , Ferris N. P. et al. ( 2007; ). Foot-and-mouth disease virus serotype A in Egypt. . Emerg Infect Dis 13:, 1593–1596.[PubMed] [CrossRef]
    [Google Scholar]
  35. Knowles N. J. , Nazem Shirazi M. H. , Wadsworth J. , Swabey K. G. , Stirling J. M. , Statham R. J. , Li Y. , Hutchings G. H. , Ferris N. P. et al. & other authors ( 2009; ). Recent spread of a new strain (A-Iran-05) of foot-and-mouth disease virus type A in the Middle East. . Transbound Emerg Dis 56:, 157–169. [CrossRef] [PubMed]
    [Google Scholar]
  36. Knowles N. J. , Wadsworth J. , Parlak U. , Ozyouk F. , Nazem Sherazi M. H. , Ferris N. P. , Hutchings G. H. , Sterling J. M. , Hammond J. M. , King D. P. . ( 2010; ). Recent events in the evolution of foot-and-mouth disease in the Middle East. . In Open Session of Research Group of the Standing Technical Committee of the EU-FMD, Vienna, Austria, 2010, 27 September –1 October, p. 9.
    [Google Scholar]
  37. Lewis-Rogers N. , McClellan D. A. , Crandall K. A. . ( 2008; ). The evolution of foot-and-mouth disease virus: impacts of recombination and selection. . Infect Genet Evol 8:, 786–798. [CrossRef] [PubMed]
    [Google Scholar]
  38. Martínez M. A. , Dopazo J. , Hernández J. , Mateu M. G. , Sobrino F. , Domingo E. , Knowles N. J. . ( 1992; ). Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades. . J Virol 66:, 3557–3565.[PubMed]
    [Google Scholar]
  39. Mason P. W. , Baxt B. , Brown F. , Harber J. , Murdin A. , Wimmer E. . ( 1993; ). Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. . Virology 192:, 568–577. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mason P. W. , Rieder E. , Baxt B. . ( 1994; ). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. . Proc Natl Acad Sci U S A 91:, 1932–1936. [CrossRef] [PubMed]
    [Google Scholar]
  41. Mohapatra J. K. , Sanyal A. , Hemadri D. , Tosh C. , Sabarinath G. P. , Venkataramanan R. . ( 2002; ). Sequence and phylogenetic analysis of the L and VP1 genes of foot-and-mouth disease virus serotype Asia1. . Virus Res 87:, 107–118. [CrossRef] [PubMed]
    [Google Scholar]
  42. Mohapatra J. K. , Subramaniam S. , Pandey L. K. , Pawar S. S. , De A. , Das B. , Sanyal A. , Pattnaik B. . ( 2011; ). Phylogenetic structure of serotype A foot-and-mouth disease virus: global diversity and the Indian perspective. . J Gen Virol 92:, 873–879. [CrossRef] [PubMed]
    [Google Scholar]
  43. Nei M. , Gojobori T. . ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. . Mol Biol Evol 3:, 418–426.[PubMed]
    [Google Scholar]
  44. Parlak U. , Ozyörük F. , Knowles N. J. , Armstrong R. M. , Aktas S. , Alkan F. , Cokcaliskan C. , Christensen L. S. . ( 2007; ). Characterisation of foot-and-mouth disease virus strains circulating in Turkey during 1996–2004. . Arch Virol 152:, 1175–1185. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rweyemamu M. , Roeder P. , Mackay D. , Sumption K. , Brownlie J. , Leforban Y. , Valarcher J.-F. , Knowles N. J. , Saraiva V. . ( 2008; ). Epidemiological patterns of foot-and-mouth disease worldwide. . Transbound Emerg Dis 55:, 57–72. [CrossRef] [PubMed]
    [Google Scholar]
  46. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  47. Samuel A. R. , Knowles N. J. . ( 2001; ). Foot-and-mouth disease type O viruses exhibit genetically and geographically distinct evolutionary lineages (topotypes). . J Gen Virol 82:, 609–621.[PubMed]
    [Google Scholar]
  48. Sangula A. K. , Belsham G. J. , Muwanika V. B. , Heller R. , Balinda S. N. , Masembe C. , Siegismund H. R. . ( 2010a; ). Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east Africa suggests two independent introductions from southern Africa. . BMC Evol Biol 10:, 371. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sangula A. K. , Belsham G. J. , Muwanika V. B. , Heller R. , Balinda S. N. , Siegismund H. R. . ( 2010b; ). Co-circulation of two extremely divergent serotype SAT 2 lineages in Kenya highlights challenges to foot-and-mouth disease control. . Arch Virol 155:, 1625–1630. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schumann K. R. , Knowles N. J. , Davies P. R. , Midgley R. J. , Valarcher J.-F. , Raoufi A. Q. , McKenna T. S. , Hurtle W. , Burans J. P. et al. & other authors ( 2008; ). Genetic characterization and molecular epidemiology of foot-and-mouth disease viruses isolated from Afghanistan in 2003–2005. . Virus Genes 36:, 401–413. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  52. Thomas A. A. , Woortmeijer R. J. , Puijk W. , Barteling S. J. . ( 1988; ). Antigenic sites on foot-and-mouth disease virus type A10. . J Virol 62:, 2782–2789.[PubMed]
    [Google Scholar]
  53. Tosh C. , Sanyal A. , Hemadri D. , Venkataramanan R. . ( 2002; ). Phylogenetic analysis of serotype A foot-and-mouth disease virus isolated in India between 1977 and 2000. . Arch Virol 147:, 493–513. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tully D. C. , Fares M. A. . ( 2007; ). Unravelling selection shifts among foot-and-mouth disease virus (FMDV) serotypes. . Evol Bioinform Online 2:, 211–225.[PubMed]
    [Google Scholar]
  55. Tully D. C. , Fares M. A. . ( 2008; ). The tale of a modern animal plague: tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. . Virology 382:, 250–256. [CrossRef] [PubMed]
    [Google Scholar]
  56. Tully D. C. , Fares M. A. . ( 2009; ). Shifts in the selection-drift balance drive the evolution and epidemiology of foot-and-mouth disease virus. . J Virol 83:, 781–790. [CrossRef] [PubMed]
    [Google Scholar]
  57. Villaverde A. , Martínez M. A. , Sobrino F. , Dopazo J. , Moya A. , Domingo E. . ( 1991; ). Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock?. Gene 103:, 147–153. [CrossRef] [PubMed]
    [Google Scholar]
  58. Vosloo W. , Knowles N. J. , Thomson G. R. . ( 1992; ). Genetic relationships between southern African SAT-2 isolates of foot-and-mouth-disease virus. . Epidemiol Infect 109:, 547–558. [CrossRef] [PubMed]
    [Google Scholar]
  59. Waheed U. , Parida S. , Khan Q. M. , Hussain H. , Ebert K. , Wadsworth J. , Reid S. M. , Hutchings G. H. , Mahapatra M. et al. & other authors ( 2011; ). Molecular characterisation of foot-and-mouth disease viruses from Pakistan, 2005–2008. . Transbound Emerg Dis 58:, 166–172. [CrossRef]
    [Google Scholar]
  60. WRL-FMD ( 2009; ). Annual OIE/FAO FMD Reference Laboratory Network Report, January–December 2009, pp. 1–67. . Institute for Animal Health, Pirbright Laboratory, United Kingdom (available at www.wrlfmd.org).
  61. WRL-FMD ( 2010a; ). WRL-FMD Quarterly Report January–March 2010. Reference Laboratory Contract Report No. 4/27/2010, pp. 1–30. . Institute for Animal Health, Pirbright Laboratory, United Kingdom (available at www.wrlfmd.org).
  62. WRL-FMD ( 2010b; ). WRL-FMD Quarterly Report April-–June 2010. Reference Laboratory Contract Report No. 7/15/2010, pp. 1–32. . Institute for Animal Health, Pirbright Laboratory, United Kingdom (available at www.wrlfmd.org).
  63. WRL-FMD ( 2010c; ). WRL-FMD Quarterly Report July–September 2010. Reference Laboratory Contract Report No. 10/25/2010, pp. 1–26. . Institute for Animal Health, Pirbright Laboratory, United Kingdom (available at www.wrlfmd.org).
  64. Yoon S. H. , Lee K.-N. , Park J.-H. , Kim H. . ( 2011; ). Molecular epidemiology of foot-and-mouth disease virus serotypes A and O with emphasis on Korean isolates: temporal and spatial dynamics. . Arch Virol 156:, 817–826. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.035626-0
Loading
/content/journal/jgv/10.1099/vir.0.035626-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2849 - 2864

Oligonucleotide primers used for RT-PCR and sequencing of FMDV type A complete capsid (P1)-coding region

Mid-point Bayesian tree generated using the nucleotide sequences (nt=639) of the VP1-coding region of serotype A FMDVs



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error