1887

Abstract

Herpes simplex virus (HSV) type-1 establishes lifelong latency in sensory neurones and it is widely assumed that latency is the consequence of a failure to initiate virus immediate-early (IE) gene expression. However, using a Cre reporter mouse system in conjunction with Cre-expressing HSV-1 recombinants we have previously shown that activation of the IE ICP0 promoter can precede latency establishment in at least 30 % of latently infected cells. During productive infection of non-neuronal cells, IE promoter activation is largely dependent on the transactivator VP16 a late structural component of the virion. Of significance, VP16 has recently been shown to exhibit altered regulation in neurones; where its synthesis is necessary for IE gene expression during both lytic infection and reactivation from latency. In the current study, we utilized the Cre reporter mouse model system to characterize the full extent of viral promoter activity compatible with cell survival and latency establishment. In contrast to the high frequency activation of representative IE promoters prior to latency establishment, cell marking using a virus recombinant expressing Cre under VP16 promoter control was very inefficient. Furthermore, infection of neuronal cultures with VP16 mutants reveals a strong VP16 requirement for IE promoter activity in non-neuronal cells, but not sensory neurones. We conclude that only IE promoter activation can efficiently precede latency establishment and that this activation is likely to occur through a VP16-independent mechanism.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034728-0
2011-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2575.html?itemId=/content/journal/jgv/10.1099/vir.0.034728-0&mimeType=html&fmt=ahah

References

  1. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. 1989; Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J Virol 63:2260–2269[PubMed]
    [Google Scholar]
  2. Arthur J. L., Scarpini C. G., Connor V., Lachmann R. H., Tolkovsky A. M., Efstathiou S. 2001; Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro . J Virol 75:3885–3895 [View Article][PubMed]
    [Google Scholar]
  3. Balan P., Davis-Poynter N., Bell S., Atkinson H., Browne H., Minson T. 1994; An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258 [View Article][PubMed]
    [Google Scholar]
  4. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J Gen Virol 18:329–346 [View Article][PubMed]
    [Google Scholar]
  5. Chen S. H., Kramer M. F., Schaffer P. A., Coen D. M. 1997; A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71:5878–5884[PubMed]
    [Google Scholar]
  6. Chen S. H., Lee L. Y., Garber D. A., Schaffer P. A., Knipe D. M., Coen D. M. 2002; Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 76:4764–4772 [View Article][PubMed]
    [Google Scholar]
  7. Cliffe A. R., Garber D. A., Knipe D. M. 2009; Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83:8182–8190 [View Article][PubMed]
    [Google Scholar]
  8. Coleman H. M., Connor V., Cheng Z. S., Grey F., Preston C. M., Efstathiou S. 2008; Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89:68–77 [View Article][PubMed]
    [Google Scholar]
  9. Ecob-Prince M. S., Preston C. M., Rixon F. J., Hassan K., Kennedy P. G. 1993; Neurons containing latency-associated transcripts are numerous and widespread in dorsal root ganglia following footpad inoculation of mice with herpes simplex virus type 1 mutant in1814. J Gen Virol 74:985–994 [View Article][PubMed]
    [Google Scholar]
  10. Efstathiou S., Preston C. M. 2005; Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119 [View Article][PubMed]
    [Google Scholar]
  11. Garber D. A., Schaffer P. A., Knipe D. M. 1997; A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71:5885–5893[PubMed]
    [Google Scholar]
  12. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol 28:341–353 [View Article][PubMed]
    [Google Scholar]
  13. Homer E. G., Rinaldi A., Nicholl M. J., Preston C. M. 1999; Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J Virol 73:8512–8518[PubMed]
    [Google Scholar]
  14. Jurak I., Kramer M. F., Mellor J. C., van Lint A. L., Roth F. P., Knipe D. M., Coen D. M. 2010; Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659–4672 [View Article][PubMed]
    [Google Scholar]
  15. Knickelbein J. E., Khanna K. M., Yee M. B., Baty C. J., Kirichington P. R., Hendricks R. L. 2008; Non cytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322:268–271 [CrossRef]
    [Google Scholar]
  16. Kristie T. M., Roizman B. 1987; Host cell proteins bind to the cis-acting site required for virion-mediated induction of herpes simplex virus 1 alpha genes. Proc Natl Acad Sci U S A 84:71–75 [View Article][PubMed]
    [Google Scholar]
  17. Lachmann R. H., Efstathiou S. 1997; Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71:3197–3207[PubMed]
    [Google Scholar]
  18. Lieu P. T., Wagner E. K. 2000; Too leaky-late HSV-1 promoters differ significantly in structural architecture. Virology 272:191–203 [CrossRef]
    [Google Scholar]
  19. Liu T., Khanna K. M., Chen X., Fink D. J., Hendricks R. L. 2000; CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466 [View Article][PubMed]
    [Google Scholar]
  20. Liu T., Khanna K. M., Carriere B. N., Hendricks R. L. 2001; Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol 75:11178–11184 [View Article][PubMed]
    [Google Scholar]
  21. Loiacono C. M., Myers R., Mitchell W. J. 2002; Neurons differentially activate the herpes simplex virus type 1 immediate-early gene ICP0 and ICP27 promoters in transgenic mice. J Virol 76:2449–2459 [View Article][PubMed]
    [Google Scholar]
  22. Loiacono C. M., Taus N. S., Mitchell W. J. 2003; The herpes simplex virus type 1 ICP0 promoter is activated by viral reactivation stimuli in trigeminal ganglia neurons of transgenic mice. J Neurovirol 9:336–345[PubMed] [CrossRef]
    [Google Scholar]
  23. Loiacono C. M., Myers R., Mitchell W. J. 2004; The herpes simplex virus type 1 early gene (thymidine kinase) promoter is activated in neurons of brain, but not trigeminal ganglia, of transgenic mice in the absence of viral proteins. J Neurovirol 10:116–122 [View Article][PubMed]
    [Google Scholar]
  24. Maillet S., Naas T., Crepin S., Roque-Afonso A. M., Lafay F., Efstathiou S., Labetoulle M. 2006; Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts. J Virol 80:9310–9321 [View Article][PubMed]
    [Google Scholar]
  25. Marshall K. R., Lachmann R. H., Efstathiou S., Rinaldi A., Preston C. M. 2000; Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J Virol 74:956–964 [View Article][PubMed]
    [Google Scholar]
  26. Nagy A. 2000; Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109 [View Article][PubMed]
    [Google Scholar]
  27. Perng G. C., Jones C., Ciacci-Zanella J., Stone M., Henderson G., Yukht A., Slanina S. M., Hofman F. M., Ghiasi H. et al. 2000; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503 [View Article][PubMed]
    [Google Scholar]
  28. Preston C. M., Frame M. C., Campbell M. E. 1988; A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell 52:425–434 [View Article][PubMed]
    [Google Scholar]
  29. Preston C. M., Mabbs R., Nicholl M. J. 1997; Construction and characterization of herpes simplex virus type 1 mutants with conditional defects in immediate early gene expression. Virology 229:228–239 [View Article][PubMed]
    [Google Scholar]
  30. Proença J. T., Coleman H. M., Connor V., Winton D. J., Efstathiou S. 2008; A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974 [View Article][PubMed]
    [Google Scholar]
  31. Rinaldi A., Marshall K. R., Preston C. M. 1999; A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res 65:11–20 [View Article][PubMed]
    [Google Scholar]
  32. Sawtell N. M., Thompson R. L. 1992; Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66:2150–2156[PubMed]
    [Google Scholar]
  33. Sheridan B. S., Knickelbein J. E., Hendricks R. L. 2007; CD8 T cells and latent herpes simplex virus type 1: keeping the peace in sensory ganglia. Expert Opin Biol Ther 7:1323–1331 [View Article][PubMed]
    [Google Scholar]
  34. Soriano P. 1999; Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71 [View Article][PubMed]
    [Google Scholar]
  35. Steiner I., Spivack J. G., Deshmane S. L., Ace C. I., Preston C. M., Fraser N. W. 1990; A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol 64:1630–1638[PubMed]
    [Google Scholar]
  36. Stern S., Tanaka M., Herr W. 1989; The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 341:624–630 [View Article][PubMed]
    [Google Scholar]
  37. Thompson R. L., Sawtell N. M. 2001; Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75:6660–6675 [View Article][PubMed]
    [Google Scholar]
  38. Thompson R. L., Sawtell N. M. 2006; Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo . J Virol 80:10919–10930 [View Article][PubMed]
    [Google Scholar]
  39. Thompson R. L., Shieh M. T., Sawtell N. M. 2003; Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo . J Virol 77:12319–12330 [View Article][PubMed]
    [Google Scholar]
  40. Thompson R. L., Preston C. M., Sawtell N. M. 2009; De novo synthesis of VP16 coordinates the exit from HSV latency in vivo . PLoS Pathog 5:e1000352 [View Article][PubMed]
    [Google Scholar]
  41. Umbach J. L., Kramer M. F., Jurak I., Karnowski H. W., Coen D. M., Cullen B. R. 2008; MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783[PubMed]
    [Google Scholar]
  42. Umbach J. L., Nagel M. A., Cohrs R. J., Gilden D. H., Cullen B. R. 2009; Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683 [View Article][PubMed]
    [Google Scholar]
  43. Umbach J. L., Wang K., Tang S., Krause P. R., Mont E. K., Cohen J. I., Cullen B. R. 2010; Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2. J Virol 84:1189–1192 [View Article][PubMed]
    [Google Scholar]
  44. Wagner E. K., Bloom D. C. 1997; Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443[PubMed]
    [Google Scholar]
  45. Wakim L. M., Jones C. M., Gebhardt T., Preston C. M., Carboue F. R. 2008; CD8+ T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol Cell Biol 86:666–675 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034728-0
Loading
/content/journal/jgv/10.1099/vir.0.034728-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error