1887

Abstract

Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection–defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034603-0
2011-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2691.html?itemId=/content/journal/jgv/10.1099/vir.0.034603-0&mimeType=html&fmt=ahah

References

  1. Albiach-Marti M. R., Robertson C., Gowda S., Tatineni S., Belliure B., Garnsey S. M., Folimonova S. Y., Moreno P., Dawson W. O.. ( 2010; ). The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. . Mol Plant Pathol 11:, 55–67. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anderson E. J., Qui S. G., Schoelz J. E.. ( 1991; ). Genetic analysis of determinants of disease severity and virus concentration in cauliflower mosaic virus. . Virology 181:, 647–655. [CrossRef] [PubMed]
    [Google Scholar]
  3. Aranda M., Maule A.. ( 1998; ). Virus-induced host gene shutoff in animals and plants. . Virology 243:, 261–267. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arce-Johnson P., Kahn T. W., Reimann-Philipp U., Rivera-Bustamante R., Beachy R. N.. ( 1995; ). The amount of movement protein produced in transgenic plants influences the establishment, local movement, and systemic spread of infection by movement protein-deficient tobacco mosaic virus. . Mol Plant Microbe Interact 8:, 415–423. [CrossRef]
    [Google Scholar]
  5. Aronson M. N., Meyer A. D., Györgyey J., Katul L., Vetten H. J., Gronenborn B., Timchenko T.. ( 2000; ). Clink, a nanovirus-encoded protein, binds both pRB and SKP1. . J Virol 74:, 2967–2972. [CrossRef] [PubMed]
    [Google Scholar]
  6. Balachandran S., Hull R. J., Vaadia Y., Wolf S., Lucas W. J.. ( 1995; ). Alteration in carbon partitioning induced by the movement protein of tobacco mosaic virus originates in the mesophyll and is independent of change in the plasmodesmal size exclusion limit. . Plant Cell Environ 18:, 1301–1310. [CrossRef]
    [Google Scholar]
  7. Ballut L., Drucker M., Pugnière M., Cambon F., Blanc S., Roquet F., Candresse T., Schmid H. P., Nicolas P. et al. & other authors ( 2005; ). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. . J Gen Virol 86:, 2595–2603. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bazzini A. A., Hopp H. E., Beachy R. N., Asurmendi S.. ( 2007; ). Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. . Proc Natl Acad Sci U S A 104:, 12157–12162. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bendahmane A., Kanyuka K., Baulcombe D. C.. ( 1999; ). The Rx gene from potato controls separate virus resistance and cell death responses. . Plant Cell 11:, 781–792. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bilgin D. D., Liu Y., Schiff M., Dinesh-Kumar S. P.. ( 2003; ). P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. . Dev Cell 4:, 651–661. [CrossRef] [PubMed]
    [Google Scholar]
  11. Brandner K., Sambade A., Boutant E., Didier P., Mély Y., Ritzenthaler C., Heinlein M.. ( 2008; ). Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. . Plant Physiol 147:, 611–623. [CrossRef] [PubMed]
    [Google Scholar]
  12. Calder V. L., Palukaitis P.. ( 1992; ). Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. . J Gen Virol 73:, 165–168. [CrossRef] [PubMed]
    [Google Scholar]
  13. Carvalho M. F., Turgeon R., Lazarowitz S. G.. ( 2006; ). The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. . Plant Physiol 140:, 1317–1330. [CrossRef] [PubMed]
    [Google Scholar]
  14. Castillo A. G., Kong L. J., Hanley-Bowdoin L., Bejarano E. R.. ( 2004; ). Interaction between a geminivirus replication protein and the plant sumoylation system. . J Virol 78:, 2758–2769. [CrossRef] [PubMed]
    [Google Scholar]
  15. Chapman E. J., Prokhnevsky A. I., Gopinath K., Dolja V. V., Carrington J. C.. ( 2004; ). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. . Genes Dev 18:, 1179–1186. [CrossRef] [PubMed]
    [Google Scholar]
  16. Chen M. H., Tian G. W., Gafni Y., Citovsky V.. ( 2005; ). Effects of calreticulin on viral cell-to-cell movement. . Plant Physiol 138:, 1866–1876. [CrossRef] [PubMed]
    [Google Scholar]
  17. Chiang C.-H., Lee C.-Y., Wang C.-H., Jan F.-J., Lin S.-S., Chen T.-C., Raja J. A. J., Yeh S.-D.. ( 2007; ). Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. . Eur J Plant Pathol 118:, 333–348. [CrossRef]
    [Google Scholar]
  18. Chisholm S. T., Parra M. A., Anderberg R. J., Carrington J. C.. ( 2001; ). Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. . Plant Physiol 127:, 1667–1675. [CrossRef] [PubMed]
    [Google Scholar]
  19. Chowda-Reddy R. V., Sun H., Chen H., Poysa V., Ling H., Gijzen M., Wang A.. ( 2011; ). Mutations in the P3 protein of Soybean mosaic virus G2 isolates determine virulence on Rsv4-genotype soybean. . Mol Plant Microbe Interact 24:, 37–43. [CrossRef] [PubMed]
    [Google Scholar]
  20. Chu M., Desvoyes B., Turina M., Noad R., Scholthof H. B.. ( 2000; ). Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. . Virology 266:, 79–87. [CrossRef] [PubMed]
    [Google Scholar]
  21. Cosson P., Sofer L., Le Q. H., Léger V., Schurdi-Levraud V., Whitham S. A., Yamamoto M. L., Gopalan S., Le Gall O. et al. & other authors ( 2010; ). RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. . Plant Physiol 154:, 222–232. [CrossRef] [PubMed]
    [Google Scholar]
  22. Cuellar W. J., Tairo F., Kreuze J. F., Valkonen J. P. T.. ( 2008; ). Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. . J Gen Virol 89:, 573–582. [CrossRef] [PubMed]
    [Google Scholar]
  23. Culver J. N., Padmanabhan M. S.. ( 2007; ). Virus-induced disease: altering host physiology one interaction at a time. . Annu Rev Phytopathol 45:, 221–243. [CrossRef] [PubMed]
    [Google Scholar]
  24. Dallot S., Quiot-Douine L., Sáenz P., Cervera M. T., García J. A., Quiot J. B.. ( 2001; ). Identification of Plum pox virus determinants implicated in specific interactions with different Prunus spp. . Phytopathology 91:, 159–164. [CrossRef] [PubMed]
    [Google Scholar]
  25. Dardick C.. ( 2007; ). Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. . Mol Plant Microbe Interact 20:, 1004–1017. [CrossRef] [PubMed]
    [Google Scholar]
  26. Dardick C. D., Golem S., Culver J. N.. ( 2000; ). Susceptibility and symptom development in Arabidopsis thaliana to Tobacco mosaic virus is influenced by virus cell-to-cell movement. . Mol Plant Microbe Interact 13:, 1139–1144. [CrossRef] [PubMed]
    [Google Scholar]
  27. Decroocq V., Salvador B., Sicard O., Glasa M., Cosson P., Svanella-Dumas L., Revers F., García J. A., Candresse T.. ( 2009; ). The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. . Mol Plant Microbe Interact 22:, 1302–1311. [CrossRef] [PubMed]
    [Google Scholar]
  28. Desbiez C., Gal-On A., Girard M., Wipf-Scheibel C., Lecoq H.. ( 2003; ). Increase in Zucchini yellow mosaic virus symptom severity in tolerant zucchini cultivars is related to a point mutation in P3 protein and is associated with a loss of relative fitness on susceptible plants. . Phytopathology 93:, 1478–1484. [CrossRef] [PubMed]
    [Google Scholar]
  29. Desvoyes B., Faure-Rabasse S., Chen M. H., Park J. W., Scholthof H. B.. ( 2002; ). A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. . Plant Physiol 129:, 1521–1532. [CrossRef] [PubMed]
    [Google Scholar]
  30. Díaz J. A., Nieto C., Moriones E., Truniger V., Aranda M. A.. ( 2004; ). Molecular characterization of a Melon necrotic spot virus strain that overcomes the resistance in melon and nonhost plants. . Mol Plant Microbe Interact 17:, 668–675. [CrossRef] [PubMed]
    [Google Scholar]
  31. Dielen A. S., Sassaki F. T., Walter J., Michon T., Ménard G., Pagny G., Krause-Sakate R., Maia I. G., Badaoui S. et al. & other authors ( 2011; ). The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the lettuce mosaic potyvirus HcPro protein. . Mol Plant Pathol 12:, 137–150. [CrossRef] [PubMed]
    [Google Scholar]
  32. Dorokhov Y. L., Mäkinen K., Frolova O. Y., Merits A., Saarinen J., Kalkkinen N., Atabekov J. G., Saarma M.. ( 1999; ). A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. . FEBS Lett 461:, 223–228. [CrossRef] [PubMed]
    [Google Scholar]
  33. Dunoyer P., Voinnet O.. ( 2005; ). The complex interplay between plant viruses and host RNA-silencing pathways. . Curr Opin Plant Biol 8:, 415–423. [CrossRef] [PubMed]
    [Google Scholar]
  34. Dunoyer P., Lecellier C. H., Parizotto E. A., Himber C., Voinnet O.. ( 2004; ). Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. . Plant Cell 16:, 1235–1250. [CrossRef] [PubMed]
    [Google Scholar]
  35. Eggen R., Verver J., Wellink J., Pleij K., van Kammen A., Goldbach R.. ( 1989; ). Analysis of sequences involved in cowpea mosaic virus RNA replication using site-specific mutants. . Virology 173:, 456–464. [CrossRef] [PubMed]
    [Google Scholar]
  36. Eggenberger A. L., Hajimorad M. R., Hill J. H.. ( 2008; ). Gain of virulence on Rsv1-genotype soybean by an avirulent Soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. . Mol Plant Microbe Interact 21:, 931–936. [CrossRef] [PubMed]
    [Google Scholar]
  37. Fellers J. P., Tremblay D., Handest M. F., Lommel S. A.. ( 2002; ). The Potato virus Y MSNR Nlb-replicase is the elicitor of a veinal necrosis-hypersensitive response in root knot nematode resistant tobacco. . Mol Plant Pathol 3:, 145–152. [CrossRef] [PubMed]
    [Google Scholar]
  38. Fernandez I., Candresse T., Le Gall O., Dunez J.. ( 1999; ). The 5′ noncoding region of grapevine chrome mosaic nepovirus RNA-2 triggers a necrotic response on three Nicotiana spp. . Mol Plant Microbe Interact 12:, 337–344. [CrossRef] [PubMed]
    [Google Scholar]
  39. Fernández-Calviño L., Faulkner C., Maule A.. ( 2011; ). Plasmodesmata as active conduits for virus cell-to-cell movement. . In Advances in Plant Virology, p. 470. Edited by Caranta C., Aranda M. A., Tepfer M., Lopez-Moya J. J... Norwich, UK:: Caister Academic Press;.
    [Google Scholar]
  40. Fontes E. P. B., Santos A. A., Luz D. F., Waclawovsky A. J., Chory J.. ( 2004; ). The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. . Genes Dev 18:, 2545–2556. [CrossRef] [PubMed]
    [Google Scholar]
  41. Fridborg I., Grainger J., Page A., Coleman M., Findlay K., Angell S.. ( 2003; ). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. . Mol Plant Microbe Interact 16:, 132–140. [CrossRef] [PubMed]
    [Google Scholar]
  42. Gal-On A.. ( 2000; ). A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. . Phytopathology 90:, 467–473. [CrossRef] [PubMed]
    [Google Scholar]
  43. Geri C., Love A. J., Cecchini E., Barrett S. J., Laird J., Covey S. N., Milner J. J.. ( 2004; ). Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. . Plant Mol Biol 56:, 111–124. [CrossRef] [PubMed]
    [Google Scholar]
  44. Gómez G., Martínez G., Pallás V.. ( 2009; ). Interplay between viroid-induced pathogenesis and RNA silencing pathways. . Trends Plant Sci 14:, 264–269. [CrossRef] [PubMed]
    [Google Scholar]
  45. González-Jara P., Atencio F. A., Martínez-García B., Barajas D., Tenllado F., Díaz-Ruíz J. R.. ( 2005; ). A single amino acid mutation in the plum pox virus helper component-proteinase gene abolishes both synergistic and RNA silencing suppression activities. . Phytopathology 95:, 894–901. [CrossRef] [PubMed]
    [Google Scholar]
  46. Hajimorad M. R., Hill J. H.. ( 2001; ). Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. . Mol Plant Microbe Interact 14:, 587–598. [CrossRef] [PubMed]
    [Google Scholar]
  47. Hajimorad M. R., Eggenberger A. L., Hill J. H.. ( 2005; ). Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. . J Virol 79:, 1215–1222. [CrossRef] [PubMed]
    [Google Scholar]
  48. Hajimorad M. R., Eggenberger A. L., Hill J. H.. ( 2006; ). Strain-specific P3 of Soybean mosaic virus elicits Rsv1-mediated extreme resistance, but absence of P3 elicitor function alone is insufficient for virulence on Rsv1-genotype soybean. . Virology 345:, 156–166. [CrossRef] [PubMed]
    [Google Scholar]
  49. Hajimorad M. R., Wen R. H., Eggenberger A. L., Hill J. H., Maroof M. A.. ( 2011; ). Experimental adaptation of an RNA virus mimics natural evolution. . J Virol 85:, 2557–2564. [CrossRef] [PubMed]
    [Google Scholar]
  50. Hao L. H., Wang H., Sunter G., Bisaro D. M.. ( 2003; ). Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. . Plant Cell 15:, 1034–1048. [CrossRef] [PubMed]
    [Google Scholar]
  51. Haupt S., Cowan G. H., Ziegler A., Roberts A. G., Oparka K. J., Torrance L.. ( 2005; ). Two plant-viral movement proteins traffic in the endocytic recycling pathway. . Plant Cell 17:, 164–181. [CrossRef] [PubMed]
    [Google Scholar]
  52. Havelda Z., Várallyay É., Válóczi A., Burgyán J.. ( 2008; ). Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. . Plant J 55:, 278–288. [CrossRef] [PubMed]
    [Google Scholar]
  53. Herbers K., Tacke E., Hazirezaei M., Krause K. P., Melzer M., Rohde W., Sonnewald U.. ( 1997; ). Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. . Plant J 12:, 1045–1056. [CrossRef] [PubMed]
    [Google Scholar]
  54. Herbers K., Takahata Y., Melzer M., Mock H. P., Hajirezaei M., Sonnewald U.. ( 2000; ). Regulation of carbohydrate partitioning during the interaction of Potato virus Y with tobacco. . Mol Plant Pathol 1:, 51–59. [CrossRef] [PubMed]
    [Google Scholar]
  55. Hofius D., Herbers K., Melzer M., Omid A., Tacke E., Wolf S., Sonnewald U.. ( 2001; ). Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. . Plant J 28:, 529–543. [CrossRef] [PubMed]
    [Google Scholar]
  56. Huang Z., Andrianov V. M., Han Y., Howell S. H.. ( 2001; ). Identification of arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. . Plant Mol Biol 47:, 663–675. [CrossRef] [PubMed]
    [Google Scholar]
  57. Iglesias V. A., Meins F. Jr. ( 2000; ). Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. . Plant J 21:, 157–166. [CrossRef] [PubMed]
    [Google Scholar]
  58. Inaba J., Kim B. M., Shimura H., Masuta C.. ( 2011; ). Virus-induced necrosis is a consequence of direct protein–protein interaction between a viral RNA-silencing suppressor and a host catalase. . Plant Physiol 156:, 2026–2036. [CrossRef] [PubMed]
    [Google Scholar]
  59. Jay F., Wang Y., Yu A., Taconnat L., Pelletier S., Colot V., Renou J. P., Voinnet O.. ( 2011; ). Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis . . PLoS Pathog 7:, e1002035. [CrossRef] [PubMed]
    [Google Scholar]
  60. Jenner C. E., Sánchez F., Nettleship S. B., Foster G. D., Ponz F., Walsh J. A.. ( 2000; ). The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01 . . Mol Plant Microbe Interact 13:, 1102–1108. [CrossRef] [PubMed]
    [Google Scholar]
  61. Jenner C. E., Wang X. W., Tomimura K., Ohshima K., Ponz F., Walsh J. A.. ( 2003; ). The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. . Mol Plant Microbe Interact 16:, 777–784. [CrossRef] [PubMed]
    [Google Scholar]
  62. Jin Y. S., Ma D. Y., Dong J. L., Jin J. C., Li D. F., Deng C. W., Wang T.. ( 2007; ). HC-Pro protein of Potato virus Y can interact with three Arabidopsis 20S proteasome subunits in planta. . J Virol 81:, 12881–12888. [CrossRef] [PubMed]
    [Google Scholar]
  63. Johansen I. E., Lund O. S., Hjulsager C. K., Laursen J.. ( 2001; ). Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. . J Virol 75:, 6609–6614. [CrossRef] [PubMed]
    [Google Scholar]
  64. Jones J. D. G., Dangl J. L.. ( 2006; ). The plant immune system. . Nature 444:, 323–329. [CrossRef] [PubMed]
    [Google Scholar]
  65. Kachroo P., Yoshioka K., Shah J., Dooner H. K., Klessig D. F.. ( 2000; ). Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. . Plant Cell 12:, 677–690. [CrossRef] [PubMed]
    [Google Scholar]
  66. Kaido M., Inoue Y., Takeda Y., Sugiyama K., Takeda A., Mori M., Tamai A., Meshi T., Okuno T., Mise K.. ( 2007; ). Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. . Mol Plant Microbe Interact 20:, 671–681. [CrossRef] [PubMed]
    [Google Scholar]
  67. Kasschau K. D., Carrington J. C.. ( 1998; ). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. . Cell 95:, 461–470. [CrossRef] [PubMed]
    [Google Scholar]
  68. Kasschau K. D., Xie Z. X., Allen E., Llave C., Chapman E. J., Krizan K. A., Carrington J. C.. ( 2003; ). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. . Dev Cell 4:, 205–217. [CrossRef] [PubMed]
    [Google Scholar]
  69. Kim S. H., Macfarlane S., Kalinina N. O., Rakitina D. V., Ryabov E. V., Gillespie T., Haupt S., Brown J. W. S., Taliansky M.. ( 2007a; ). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. . Proc Natl Acad Sci U S A 104:, 11115–11120. [CrossRef] [PubMed]
    [Google Scholar]
  70. Kim S. H., Ryabov E. V., Kalinina N. O., Rakitina D. V., Gillespie T., MacFarlane S., Haupt S., Brown J. W. S., Taliansky M.. ( 2007b; ). Cajal bodies and the nucleolus are required for a plant virus systemic infection. . EMBO J 26:, 2169–2179. [CrossRef] [PubMed]
    [Google Scholar]
  71. Kim B. M., Suehiro N., Natsuaki T., Inukai T., Masuta C.. ( 2010; ). The P3 protein of Turnip mosaic virus can alone induce hypersensitive response-like cell death in Arabidopsis thaliana carrying TuNI . . Mol Plant Microbe Interact 23:, 144–152. [CrossRef] [PubMed]
    [Google Scholar]
  72. Király L., Cole A. B., Bourque J. E., Schoelz J. E.. ( 1999; ). Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. . Mol Plant Microbe Interact 12:, 919–925. [CrossRef]
    [Google Scholar]
  73. Kleinow T., Nischang M., Beck A., Kratzer U., Tanwir F., Preiss W., Kepp G., Jeske H.. ( 2009; ). Three C-terminal phosphorylation sites in the Abutilon mosaic virus movement protein affect symptom development and viral DNA accumulation. . Virology 390:, 89–101. [CrossRef] [PubMed]
    [Google Scholar]
  74. Komatsu K., Hashimoto M., Ozeki J., Yamaji Y., Maejima K., Senshu H., Himeno M., Okano Y., Kagiwada S., Namba S.. ( 2010; ). Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. . Mol Plant Microbe Interact 23:, 283–293. [CrossRef] [PubMed]
    [Google Scholar]
  75. Kong L. J., Orozco B. M., Roe J. L., Nagar S., Ou S., Feiler H. S., Durfee T., Miller A. B., Gruissem W. et al. & other authors ( 2000; ). A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. . EMBO J 19:, 3485–3495. [CrossRef] [PubMed]
    [Google Scholar]
  76. Kragler F., Curin M., Trutnyeva K., Gansch A., Waigmann E.. ( 2003; ). MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. . Plant Physiol 132:, 1870–1883. [CrossRef] [PubMed]
    [Google Scholar]
  77. Krenz B., Windeisen V., Wege C., Jeske H., Kleinow T.. ( 2010; ). A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. . Virology 401:, 6–17. [CrossRef] [PubMed]
    [Google Scholar]
  78. Lartey R. T., Ghoshroy S., Citovsky V.. ( 1998; ). Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. . Mol Plant Microbe Interact 11:, 706–709. [CrossRef] [PubMed]
    [Google Scholar]
  79. Li F., Ding S. W.. ( 2006; ). Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. . Annu Rev Microbiol 60:, 503–531. [CrossRef] [PubMed]
    [Google Scholar]
  80. Li H. W., Lucy A. P., Guo H. S., Li W. X., Ji L. H., Wong S. M., Ding S. W.. ( 1999; ). Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. . EMBO J 18:, 2683–2691. [CrossRef] [PubMed]
    [Google Scholar]
  81. Lin B., Heaton L. A.. ( 2001; ). An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro . . J Gen Virol 82:, 1245–1251.[PubMed]
    [Google Scholar]
  82. Lin S. S., Wu H. W., Jan F. J., Hou R. F., Yeh S. D.. ( 2007; ). Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. . Phytopathology 97:, 287–296. [CrossRef] [PubMed]
    [Google Scholar]
  83. Lough T. J., Lee R. H., Emerson S. J., Forster R. L. S., Lucas W. J.. ( 2006; ). Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. . Virology 351:, 455–465. [CrossRef] [PubMed]
    [Google Scholar]
  84. Love A. J., Martin T., Graham I. A., Milner J. J.. ( 2005; ). Carbohydrate partitioning and sugar signalling in Cauliflower mosaic virus-infected turnip and Arabidopsis . . Physiol Mol Plant Pathol 67:, 83–91. [CrossRef]
    [Google Scholar]
  85. Lucas W. J.. ( 2006; ). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. . Virology 344:, 169–184. [CrossRef] [PubMed]
    [Google Scholar]
  86. Mariano A. C., Andrade M. O., Santos A. A., Carolino S. M., Oliveira M. L., Baracat-Pereira M. C., Brommonshenkel S. H., Fontes E. P.. ( 2004; ). Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. . Virology 318:, 24–31. [CrossRef] [PubMed]
    [Google Scholar]
  87. Matsushita Y., Deguchi M., Youda M., Nishiguchi M., Nyunoya H.. ( 2001; ). The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. . Mol Cells 12:, 57–66.[PubMed]
    [Google Scholar]
  88. Maule A., Leh V., Lederer C.. ( 2002; ). The dialogue between viruses and hosts in compatible interactions. . Curr Opin Plant Biol 5:, 279–284. [CrossRef] [PubMed]
    [Google Scholar]
  89. McGarry R. C., Barron Y. D., Carvalho M. F., Hill J. E., Gold D., Cheung E., Kraus W. L., Lazarowitz S. G.. ( 2003; ). A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. . Plant Cell 15:, 1605–1618. [CrossRef] [PubMed]
    [Google Scholar]
  90. Mestre P., Brigneti G., Baulcombe D. C.. ( 2000; ). An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from Potato virus Y . . Plant J 23:, 653–661. [CrossRef] [PubMed]
    [Google Scholar]
  91. Moissiard G., Voinnet O.. ( 2006; ). RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. . Proc Natl Acad Sci U S A 103:, 19593–19598. [CrossRef] [PubMed]
    [Google Scholar]
  92. Moreno I. M., Bernal J. J., García de Blas B., Rodriguez-Cerezo E., García-Arenal F.. ( 1997; ). The expression level of the 3a movement protein determines differences in severity of symptoms between two strains of tomato aspermy cucumovirus. . Mol Plant Microbe Interact 10:, 171–179. [CrossRef] [PubMed]
    [Google Scholar]
  93. Mukasa S. B., Rubaihayo P. R., Valkonen J. P. T.. ( 2006; ). Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. . Plant Pathol 55:, 458–467. [CrossRef]
    [Google Scholar]
  94. Mur L. A. J., Kenton P., Lloyd A. J., Ougham H., Prats E.. ( 2008; ). The hypersensitive response; the centenary is upon us but how much do we know?. J Exp Bot 59:, 501–520. [CrossRef] [PubMed]
    [Google Scholar]
  95. Nieto C., Rodríguez-Moreno L., Rodríguez-Hernández A. M., Aranda M. A., Truniger V.. ( 2011; ). Nicotiana benthamiana resistance to non-adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. . Plant J 66:, 492–501. [CrossRef] [PubMed]
    [Google Scholar]
  96. Nishiguchi M., Motoyoshi F., Oshima N.. ( 1978; ). Behavior of a temperature sensitive strain of tobacco mosaic-virus in tomato leaves and protoplasts. . J Gen Virol 39:, 53–61. [CrossRef] [PubMed]
    [Google Scholar]
  97. Ohno T., Takamatsu N., Meshi T., Okada Y., Nishiguchi M., Kiho Y.. ( 1983; ). Single amino acid substitution in 30K protein of TMV defective in virus transport function. . Virology 131:, 255–258. [CrossRef] [PubMed]
    [Google Scholar]
  98. Olesinski A. A., Almon E., Navot N., Perl A., Galun E., Lucas W. J., Wolf S.. ( 1996; ). Tissue-specific expression of the Tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. . Plant Physiol 111:, 541–550.[PubMed]
    [Google Scholar]
  99. Oparka K. J., Prior D. A. M., Santa Cruz S., Padgett H. S., Beachy R. N.. ( 1997; ). Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). . Plant J 12:, 781–789. [CrossRef] [PubMed]
    [Google Scholar]
  100. Padgett H. S., Watanabe Y., Beachy R. N.. ( 1997; ). Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. . Mol Plant Microbe Interact 10:, 709–715. [CrossRef]
    [Google Scholar]
  101. Padmanabhan M. S., Shiferaw H., Culver J. N.. ( 2006; ). The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. . Mol Plant Microbe Interact 19:, 864–873. [CrossRef] [PubMed]
    [Google Scholar]
  102. Padmanabhan M. S., Kramer S. R., Wang X., Culver J. N.. ( 2008; ). Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. . J Virol 82:, 2477–2485. [CrossRef] [PubMed]
    [Google Scholar]
  103. Pallas V., Genoves A., Sánchez-Pina M. A., Navarro J. A.. ( 2011; ). Systemic movement of viruses via the plant phloem. . In Advances in Plant Virology, p. 470. Edited by Caranta C., Aranda M. A., Tepfer M., Lopez-Moya J. J... Norwich, UK:: Caister Academic Press;.
    [Google Scholar]
  104. Petty I. T. D., Edwards M. C., Jackson A. O.. ( 1990; ). Systemic movement of an RNA plant virus determined by a point substitution in a 5′ leader sequence. . Proc Natl Acad Sci U S A 87:, 8894–8897. [CrossRef] [PubMed]
    [Google Scholar]
  105. Pruss G., Ge X., Shi X. M., Carrington J. C., Bowman Vance V.. ( 1997; ). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. . Plant Cell 9:, 859–868. [CrossRef] [PubMed]
    [Google Scholar]
  106. Pruss G. J., Lawrence C. B., Bass T., Li Q. Q., Bowman L. H., Vance V.. ( 2004; ). The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. . Virology 320:, 107–120. [CrossRef] [PubMed]
    [Google Scholar]
  107. Rajamäki M. L., Kelloniemi J., Alminaite A., Kekarainen T., Rabenstein F., Valkonen J. P.. ( 2005; ). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. . Virology 342:, 88–101. [CrossRef] [PubMed]
    [Google Scholar]
  108. Rinne P. L., van den Boogaard R., Mensink M. G., Kopperud C., Kormelink R., Goldbach R., van der Schoot C.. ( 2005; ). Tobacco plants respond to the constitutive expression of the tospovirus movement protein NSM with a heat-reversible sealing of plasmodesmata that impairs development. . Plant J 43:, 688–707. [CrossRef] [PubMed]
    [Google Scholar]
  109. Rodríguez-Cerezo E., Klein P. G., Shaw J. G.. ( 1991; ). A determinant of disease symptom severity is located in the 3′-terminal noncoding region of the RNA of a plant virus. . Proc Natl Acad Sci U S A 88:, 9863–9867. [CrossRef] [PubMed]
    [Google Scholar]
  110. Sáenz P., Cervera M. T., Dallot S., Quiot L., Quiot J. B., Riechmann J. L., García J. A.. ( 2000; ). Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. . J Gen Virol 81:, 557–566.[PubMed]
    [Google Scholar]
  111. Sáenz P., Quiot L., Quiot J.-B., Candresse T., García J. A.. ( 2001; ). Pathogenicity determinants in the complex virus population of a Plum pox virus isolate. . Mol Plant Microbe Interact 14:, 278–287. [CrossRef] [PubMed]
    [Google Scholar]
  112. Salvador B., Delgadillo M. O., Sáenz P., García J. A., Simón-Mateo C.. ( 2008a; ). Identification of Plum pox virus pathogenicity determinants in herbaceous and woody hosts. . Mol Plant Microbe Interact 21:, 20–29. [CrossRef] [PubMed]
    [Google Scholar]
  113. Salvador B., Saénz P., Yangüez E., Quiot J. B., Quiot L., Delgadillo M. O., García J. A., Simón-Mateo C.. ( 2008b; ). Host-specific effect of P1 exchange between two potyviruses. . Mol Plant Pathol 9:, 147–155. [CrossRef] [PubMed]
    [Google Scholar]
  114. Sánchez-Navarro J. A., Carmen Herranz M., Pallás V.. ( 2006; ). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. . Virology 346:, 66–73. [CrossRef] [PubMed]
    [Google Scholar]
  115. Scheets K.. ( 1998; ). Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. . Virology 242:, 28–38. [CrossRef] [PubMed]
    [Google Scholar]
  116. Sekine K. T., Ishihara T., Hase S., Kusano T., Shah J., Takahashi H.. ( 2006; ). Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. . Plant Mol Biol 62:, 669–682. [CrossRef] [PubMed]
    [Google Scholar]
  117. Senthil G., Liu H., Puram V. G., Clark A., Stromberg A., Goodin M. M.. ( 2005; ). Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. . J Gen Virol 86:, 2615–2625. [CrossRef] [PubMed]
    [Google Scholar]
  118. Shiboleth Y. M., Haronsky E., Leibman D., Arazi T., Wassenegger M., Whitham S. A., Gaba V., Gal-On A.. ( 2007; ). The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. . J Virol 81:, 13135–13148. [CrossRef] [PubMed]
    [Google Scholar]
  119. Shimura H., Pantaleo V., Ishihara T., Myojo N., Inaba J.-i., Sueda K., Burgyán J., Masuta C.. ( 2011; ). A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. . PLoS Pathog 7:, e1002021. [CrossRef] [PubMed]
    [Google Scholar]
  120. Simón-Buela L., Guo H. S., García J. A.. ( 1997; ). Long sequences in the 5′ noncoding region of plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. . Virology 233:, 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  121. Smith N. A., Eamens A. L., Wang M.-B.. ( 2011; ). Viral small interfering RNAs target host genes to mediate disease symptoms in plants. . PLoS Pathog 7:, e1002022. [CrossRef] [PubMed]
    [Google Scholar]
  122. Soellick T. R., Uhrig J. F., Bucher G. L., Kellmann J. W., Schreier P. H.. ( 2000; ). The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. . Proc Natl Acad Sci U S A 97:, 2373–2378. [CrossRef] [PubMed]
    [Google Scholar]
  123. Soosaar J. L. M., Burch-Smith T. M., Dinesh-Kumar S. P.. ( 2005; ). Mechanisms of plant resistance to viruses. . Nat Rev Microbiol 3:, 789–798. [CrossRef] [PubMed]
    [Google Scholar]
  124. Takamatsu N., Watanabe Y., Meshi T., Okada Y.. ( 1990; ). Mutational analysis of the pseudoknot region in the 3′ noncoding region of tobacco mosaic virus RNA. . J Virol 64:, 3686–3693.[PubMed]
    [Google Scholar]
  125. Técsi L. I., Maule A. J., Smith A. M., Leegood R. C.. ( 1994; ). Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. . Plant J 5:, 837–847. [CrossRef]
    [Google Scholar]
  126. Torres-Barceló C., Martín S., Daròs J. A., Elena S. F.. ( 2008; ). From hypo- to hypersuppression: effect of amino acid substitutions on the RNA-silencing suppressor activity of the Tobacco etch potyvirus HC-Pro. . Genetics 180:, 1039–1049. [CrossRef] [PubMed]
    [Google Scholar]
  127. Torres-Barceló C., Daròs J. A., Elena S. F.. ( 2010; ). HC-Pro hypo- and hypersuppressor mutants: differences in viral siRNA accumulation in vivo and siRNA binding activity in vitro . . Arch Virol 155:, 251–254. [CrossRef] [PubMed]
    [Google Scholar]
  128. Tsai C. H., Dreher T. W.. ( 1993; ). Increased viral yield and symptom severity result from a single amino acid substitution in the turnip yellow mosaic virus movement protein. . Mol Plant Microbe Interact 6:, 268–273. [CrossRef] [PubMed]
    [Google Scholar]
  129. Tsuda S., Kubota K., Kanda A., Ohki T., Meshi T.. ( 2007; ). Pathogenicity of Pepper mild mottle virus is controlled by the RNA silencing suppression activity of its replication protein but not the viral accumulation. . Phytopathology 97:, 412–420. [CrossRef] [PubMed]
    [Google Scholar]
  130. Ueki S., Spektor R., Natale D. M., Citovsky V.. ( 2010; ). ANK, a host cytoplasmic receptor for the Tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. . PLoS Pathog 6:, e1001201. [CrossRef] [PubMed]
    [Google Scholar]
  131. Valli A., Martín-Hernández A. M., López-Moya J. J., García J. A.. ( 2006; ). RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus (CVYV), a member of the family Potyviridae that lacks the cysteine protease HCPro. . J Virol 80:, 10055–10063. [CrossRef] [PubMed]
    [Google Scholar]
  132. Valli A., López-Moya J. J., García J. A.. ( 2007; ). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. . J Gen Virol 88:, 1016–1028. [CrossRef] [PubMed]
    [Google Scholar]
  133. Valli A., López-Moya J. J., García J. A.. ( 2009;). RNA silencing and its suppressors in the plant-virus interplay. Chichester, UK:: John Wiley & Sons Ltd;. [CrossRef]
    [Google Scholar]
  134. van der Vossen E. A. G., Neeleman L., Bol J. F.. ( 1996; ). The 5′ terminal sequence of alfalfa mosaic virus RNA 3 is dispensable for replication and contains a determinant for symptom formation. . Virology 221:, 271–280. [CrossRef] [PubMed]
    [Google Scholar]
  135. von Bargen S., Salchert K., Paape M., Piechulla B., Kellmann J. W.. ( 2001; ). Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. . Plant Physiol Biochem 39:, 1083–1093. [CrossRef]
    [Google Scholar]
  136. Waigmann E., Ueki S., Trutnyeva K., Citovsky V.. ( 2004; ). The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. . Crit Rev Plant Sci 23:, 195–250. [CrossRef]
    [Google Scholar]
  137. Wang H., Buckley K. J., Yang X. J., Buchmann R. C., Bisaro D. M.. ( 2005; ). Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. . J Virol 79:, 7410–7418. [CrossRef] [PubMed]
    [Google Scholar]
  138. Weber H., Ohnesorge S., Silber M. V., Pfitzner A. J. P.. ( 2004; ). The Tomato mosaic virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-22 . . Arch Virol 149:, 1499–1514. [CrossRef] [PubMed]
    [Google Scholar]
  139. Wen R. H., Maroof M. A., Hajimorad M. R.. ( 2011; ). Amino acid changes in P3, and not the overlapping pipo-encoded protein, determine virulence of Soybean mosaic virus on functionally immune Rsv1-genotype soybean. . Mol Plant Pathol 12:, 799–807. [CrossRef] [PubMed]
    [Google Scholar]
  140. Whitham S. A., Wang Y. Z.. ( 2004; ). Roles for host factors in plant viral pathogenicity. . Curr Opin Plant Biol 7:, 365–371. [CrossRef] [PubMed]
    [Google Scholar]
  141. Whitham S. A., Quan S., Chang H. S., Cooper B., Estes B., Zhu T., Wang X., Hou Y. M.. ( 2003; ). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. . Plant J 33:, 271–283. [CrossRef] [PubMed]
    [Google Scholar]
  142. Wu H. W., Lin S. S., Chen K. C., Yeh S. D., Chua N. H.. ( 2010; ). Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. . Mol Plant Microbe Interact 23:, 17–28. [CrossRef] [PubMed]
    [Google Scholar]
  143. Xie Q., Sanz-Burgos A. P., Hannon G. J., Gutiérrez C.. ( 1996; ). Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. . EMBO J 15:, 4900–4908.[PubMed]
    [Google Scholar]
  144. Yambao M. L., Yagihashi H., Sekiguchi H., Sekiguchi T., Sasaki T., Sato M., Atsumi G., Tacahashi Y., Nakahara K. S., Uyeda I.. ( 2008; ). Point mutations in helper component protease of clover yellow vein virus are associated with the attenuation of RNA-silencing suppression activity and symptom expression in broad bean. . Arch Virol 153:, 105–115. [CrossRef] [PubMed]
    [Google Scholar]
  145. Yang S., Ravelonandro M.. ( 2002; ). Molecular studies of the synergistic interactions between plum pox virus HC-Pro protein and potato virus X. . Arch Virol 147:, 2301–2312. [CrossRef] [PubMed]
    [Google Scholar]
  146. Yoshii M., Yoshioka N., Ishikawa M., Naito S.. ( 1998a; ). Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. . Plant J 13:, 211–219. [CrossRef] [PubMed]
    [Google Scholar]
  147. Yoshii M., Yoshioka N., Ishikawa M., Naito S.. ( 1998b; ). Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. . J Virol 72:, 8731–8737.[PubMed]
    [Google Scholar]
  148. Yoshioka K., Matsushita Y., Kasahara M., Konagaya K., Nyunoya H.. ( 2004; ). Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. . Mol Cells 17:, 223–229.[PubMed]
    [Google Scholar]
  149. Zhang C., Hajimorad M. R., Eggenberger A. L., Tsang S., Whitham S. A., Hill J. H.. ( 2009; ). Cytoplasmic inclusion cistron of Soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. . Virology 391:, 240–248. [CrossRef] [PubMed]
    [Google Scholar]
  150. Zhu S. F., Gao F., Cao X. S., Chen M., Ye G. Y., Wei C. H., Li Y.. ( 2005; ). The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. . Plant Physiol 139:, 1935–1945. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034603-0
Loading
/content/journal/jgv/10.1099/vir.0.034603-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error