1887

Abstract

The onset of human cytomegalovirus (HCMV) lytic replication is strictly controlled by the host cell division cycle. Although viral entry of S/G2-phase cells is unperturbed expression of major immediate-early (MIE) genes IE1 and IE2 is tightly blocked in these cells. Besides the finding that cyclin-dependent kinase (CDK) activity is required for IE1/IE2 repression little is known about the nature of this cell cycle-dependent block. Here, we show that the block occurs after nuclear entry of viral DNA and prevents the accumulation of IE1/IE2 mRNAs, suggesting an inhibition of transcription. Remarkably, the presence of -regulatory regions of the MIE locus is neither sufficient nor necessary for IE1/IE2 repression in the S/G2 phase. Furthermore, the block of viral mRNA expression also affects other immediate-early transcribed regions, i.e. the US3 and UL36–38 gene loci. This suggests a mechanism of repression that acts in a general and not a gene-specific fashion. Such a nuclear, genome-wide repression of HCMV is typically mediated by the intrinsic immune defence at nuclear domain 10 (ND10) structures. However, we found that neither Daxx nor PML, the main players of ND10-based immunity, are required for the block to viral gene expression in the S/G2 phase. In addition, the viral tegument protein pp71 (pUL82), a major antagonist of the intrinsic immunity at pre-immediate-early times of infection, proved to be functional in S-phase cells. This suggests the existence of a yet undiscovered, CDK-dependent mechanism exerting higher-level control over immediate-early mRNA expression in HCMV-infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034173-0
2011-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2757.html?itemId=/content/journal/jgv/10.1099/vir.0.034173-0&mimeType=html&fmt=ahah

References

  1. Abate D. A., Watanabe S., Mocarski E. S. 2004; Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 78:10995–11006 [View Article][PubMed]
    [Google Scholar]
  2. Angulo A., Messerle M., Koszinowski U. H., Ghazal P. 1998; Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 72:8502–8509[PubMed]
    [Google Scholar]
  3. Arcangeletti M. C., Rodighiero I., De Conto F., Gatti R., Orlandini G., Ferraglia F., Motta F., Covan S., Razin S. V. et al. other authors 2009; Modulatory effect of rRNA synthesis and ppUL83 nucleolar compartmentalization on human cytomegalovirus gene expression in vitro . J Cell Biochem 108:415–423 [View Article][PubMed]
    [Google Scholar]
  4. Arcangeletti M. C., Rodighiero I., Mirandola P., De Conto F., Covan S., Germini D., Razin S., Dettori G., Chezzi C. 2011; Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro . J Cell Biochem 112:307–317 [View Article][PubMed]
    [Google Scholar]
  5. Atalay R., Zimmermann A., Wagner M., Borst E., Benz C., Messerle M., Hengel H. 2002; Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcγ receptor homologs. J Virol 76:8596–8608 [View Article][PubMed]
    [Google Scholar]
  6. Bain M., Mendelson M., Sinclair J. 2003; Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 84:41–49 [View Article][PubMed]
    [Google Scholar]
  7. Bresnahan W. A., Shenk T. E. 2000; UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 97:14506–14511 [View Article][PubMed]
    [Google Scholar]
  8. Browne E. P., Shenk T. 2003; Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci U S A 100:11439–11444 [View Article][PubMed]
    [Google Scholar]
  9. Cantrell S. R., Bresnahan W. A. 2006; Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80:6188–6191 [View Article][PubMed]
    [Google Scholar]
  10. Caposio P., Luganini A., Hahn G., Landolfo S., Gribaudo G. 2007; Activation of the virus-induced IKK/NF-κB signalling axis is critical for the replication of human cytomegalovirus in quiescent cells. Cell Microbiol 9:2040–2054 [View Article][PubMed]
    [Google Scholar]
  11. Colberg-Poley A. M. 1996; Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36-38, UL115-119, TRS1/IRS1 and US3 loci. Intervirology 39:350–360[PubMed]
    [Google Scholar]
  12. Cristea I. M., Moorman N. J., Terhune S. S., Cuevas C. D., O’Keefe E. S., Rout M. P., Chait B. T., Shenk T. 2010; Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol 84:7803–7814 [View Article][PubMed]
    [Google Scholar]
  13. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  14. Fortunato E. A., Sanchez V., Yen J. Y., Spector D. H. 2002; Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate-early gene expression that can be overcome by inhibition of the proteasome. J Virol 76:5369–5379 [View Article][PubMed]
    [Google Scholar]
  15. Grzimek N. K., Podlech J., Steffens H. P., Holtappels R., Schmalz S., Reddehase M. J. 1999; In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter-enhancer of human cytomegalovirus. J Virol 73:5043–5055[PubMed]
    [Google Scholar]
  16. Hobom U., Brune W., Messerle M., Hahn G., Koszinowski U. H. 2000; Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74:7720–7729 [View Article][PubMed]
    [Google Scholar]
  17. Hofmann H., Sindre H., Stamminger T. 2002; Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76:5769–5783 [View Article][PubMed]
    [Google Scholar]
  18. Hollenbach A. D., McPherson C. J., Mientjes E. J., Iyengar R., Grosveld G. 2002; Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115:3319–3330[PubMed]
    [Google Scholar]
  19. Huang T. H., Oka T., Asai T., Okada T., Merrills B. W., Gertson P. N., Whitson R. H., Itakura K. 1996; Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucleic Acids Res 24:1695–1701 [View Article][PubMed]
    [Google Scholar]
  20. Isaacson M. K., Juckem L. K., Compton T. 2008; Virus entry and innate immune activation. Curr Top Microbiol Immunol 325:85–100 [View Article][PubMed]
    [Google Scholar]
  21. Isern E., Gustems M., Messerle M., Borst E., Ghazal P., Angulo A. 2011; The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-κB sites during acute infection. J Virol 85:1732–1746 [View Article][PubMed]
    [Google Scholar]
  22. Ishov A. M., Vladimirova O. V., Maul G. G. 2002; Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76:7705–7712 [View Article][PubMed]
    [Google Scholar]
  23. Ishov A. M., Vladimirova O. V., Maul G. G. 2004; Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117:3807–3820 [View Article][PubMed]
    [Google Scholar]
  24. Lashmit P. E., Lundquist C. A., Meier J. L., Stinski M. F. 2004; Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J Virol 78:5113–5123 [View Article][PubMed]
    [Google Scholar]
  25. Lee E. C., Yu D., Martinez de Velasco J., Tessarollo L., Swing D. A., Court D. L., Jenkins N. A., Copeland N. G. 2001; A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65 [View Article][PubMed]
    [Google Scholar]
  26. Lukashchuk V., McFarlane S., Everett R. D., Preston C. M. 2008; Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 82:12543–12554 [View Article][PubMed]
    [Google Scholar]
  27. Meier J. L., Stinski M. F. 1997; Effect of a modulator deletion on transcription of the human cytomegalovirus major immediate-early genes in infected undifferentiated and differentiated cells. J Virol 71:1246–1255[PubMed]
    [Google Scholar]
  28. Mocarski E. S., Kemble G. W., Lyle J. M., Greaves R. F. 1996; A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci U S A 93:11321–11326 [View Article][PubMed]
    [Google Scholar]
  29. Murphy J. C., Fischle W., Verdin E., Sinclair J. H. 2002; Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21:1112–1120 [View Article][PubMed]
    [Google Scholar]
  30. Netterwald J., Yang S., Wang W., Ghanny S., Cody M., Soteropoulos P., Tian B., Dunn W., Liu F., Zhu H. 2005; Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol 79:5035–5046 [View Article][PubMed]
    [Google Scholar]
  31. Nitzsche A., Paulus C., Nevels M. 2008; Temporal dynamics of cytomegalovirus chromatin assembly in productively infected human cells. J Virol 82:11167–11180 [View Article][PubMed]
    [Google Scholar]
  32. Petrik D. T., Schmitt K. P., Stinski M. F. 2006; Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol 80:3872–3883 [View Article][PubMed]
    [Google Scholar]
  33. Qian Z., Xuan B., Hong T. T., Yu D. 2008; The full-length protein encoded by human cytomegalovirus gene UL117 is required for the proper maturation of viral replication compartments. J Virol 82:3452–3465 [View Article][PubMed]
    [Google Scholar]
  34. Qian Z., Leung-Pineda V., Xuan B., Piwnica-Worms H., Yu D. 2010; Human cytomegalovirus protein pUL117 targets the mini-chromosome maintenance complex and suppresses cellular DNA synthesis. PLoS Pathog 6:e1000814 [View Article][PubMed]
    [Google Scholar]
  35. Rosenke K., Fortunato E. A. 2004; Bromodeoxyuridine-labeled viral particles as a tool for visualization of the immediate-early events of human cytomegalovirus infection. J Virol 78:7818–7822 [View Article][PubMed]
    [Google Scholar]
  36. Saffert R. T., Kalejta R. F. 2006; Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80:3863–3871 [View Article][PubMed]
    [Google Scholar]
  37. Saffert R. T., Kalejta R. F. 2007; Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro . J Virol 81:9109–9120 [View Article][PubMed]
    [Google Scholar]
  38. Saffert R. T., Penkert R. R., Kalejta R. F. 2010; Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 84:5594–5604 [View Article][PubMed]
    [Google Scholar]
  39. Salvant B. S., Fortunato E. A., Spector D. H. 1998; Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol 72:3729–3741[PubMed]
    [Google Scholar]
  40. Schmolke S., Kern H. F., Drescher P., Jahn G., Plachter B. 1995; The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J Virol 69:5959–5968[PubMed]
    [Google Scholar]
  41. Sinclair J. 2010; Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta 1799:286–295[PubMed] [CrossRef]
    [Google Scholar]
  42. Sinzger C., Kahl M., Laib K., Klingel K., Rieger P., Plachter B., Jahn G. 2000; Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81:3021–3035[PubMed]
    [Google Scholar]
  43. Stinski M. F., Isomura H. 2008; Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol (Berl) 197:223–231 [View Article][PubMed]
    [Google Scholar]
  44. Straschewski S., Patrone M., Walther P., Gallina A., Mertens T., Frascaroli G. 2011; Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J Virol 85:5150–5158 [View Article][PubMed]
    [Google Scholar]
  45. Tavalai N., Stamminger T. 2008; New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221 [View Article][PubMed]
    [Google Scholar]
  46. Tavalai N., Stamminger T. 2011; Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 157:128–133 [View Article][PubMed]
    [Google Scholar]
  47. Tavalai N., Papior P., Rechter S., Stamminger T. 2008; Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 82:126–137 [View Article][PubMed]
    [Google Scholar]
  48. Wathen M. W., Stinski M. F. 1982; Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. J Virol 41:462–477[PubMed]
    [Google Scholar]
  49. Wiebusch L., Hagemeier C. 2001; The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. EMBO J 20:1086–1098 [View Article][PubMed]
    [Google Scholar]
  50. Wiebusch L., Neuwirth A., Grabenhenrich L., Voigt S., Hagemeier C. 2008; Cell cycle-independent expression of immediate-early gene 3 results in G1 and G2 arrest in murine cytomegalovirus-infected cells. J Virol 82:10188–10198 [View Article][PubMed]
    [Google Scholar]
  51. Woodhall D. L., Groves I. J., Reeves M. B., Wilkinson G., Sinclair J. H. 2006; Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281:37652–37660 [View Article][PubMed]
    [Google Scholar]
  52. Zydek M., Hagemeier C., Wiebusch L. 2010; Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle. PLoS Pathog 6:e1001096 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034173-0
Loading
/content/journal/jgv/10.1099/vir.0.034173-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error