1887

Abstract

The infectivity of rotavirus (RV) is dependent on an activation process triggered by the proteolytic cleavage of its spike protein VP4. This activation cleavage is performed by exogenous trypsin in the lumen of the intestines . Here, we report the generation and characterization of a recombinant RV expressing cDNA-derived VP4 with a modified cleavage site (arginine at position 247) recognized by endogenous furin as well as exogenous trypsin. Unexpectedly, the mutant virus (KU//rVP4-R247Furin) was incapable of plaque formation without an exogenous protease, although the mutant VP4s on virions were efficiently cleaved by endogenous furin. Furthermore, KU//rVP4-R247Furin showed impaired infectivity in MA104 and CV-1 cells even in the presence of trypsin compared with the parental virus carrying authentic VP4 (KU//rVP4). Although the total titre of KU//rVP4-R247Furin was comparable to that of KU//rVP4, the extracellular titre of KU//rVP4-R247Furin was markedly lower than its cell-associated titre in comparison with that of KU//rVP4. In contrast, the two viruses showed similar growth in a furin-defective LoVo cell line. These results suggest that intracellular cleavage of VP4 by furin may be disadvantageous for RV infectivity, possibly due to an inefficient virus release process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033886-0
2011-12-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2914.html?itemId=/content/journal/jgv/10.1099/vir.0.033886-0&mimeType=html&fmt=ahah

References

  1. Arias C. F. , Romero P. , Alvarez V. , López S. . ( 1996; ). Trypsin activation pathway of rotavirus infectivity. . J Virol 70:, 5832–5839.[PubMed]
    [Google Scholar]
  2. Boyce M. , Celma C. C. , Roy P. . ( 2008; ). Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. . J Virol 82:, 8339–8348. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ciarlet M. , Crawford S. E. , Cheng E. , Blutt S. E. , Rice D. A. , Bergelson J. M. , Estes M. K. . ( 2002; ). VLA-2 (α2β1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. . J Virol 76:, 1109–1123. [CrossRef] [PubMed]
    [Google Scholar]
  4. Clark S. M. , Roth J. R. , Clark M. L. , Barnett B. B. , Spendlove R. S. . ( 1981; ). Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. . J Virol 39:, 816–822.[PubMed]
    [Google Scholar]
  5. Dormitzer P. R. , Nason E. B. , Venkataram Prasad B. V. , Harrison S. C. . ( 2004; ). Structural rearrangements in the membrane penetration protein of a non-enveloped virus. . Nature 430:, 1053–1058. [CrossRef] [PubMed]
    [Google Scholar]
  6. Duckert P. , Brunak S. , Blom N. . ( 2004; ). Prediction of proprotein convertase cleavage sites. . Protein Eng Des Sel 17:, 107–112. [CrossRef] [PubMed]
    [Google Scholar]
  7. Espejo R. T. , López S. , Arias C. . ( 1981; ). Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. . J Virol 37:, 156–160.[PubMed]
    [Google Scholar]
  8. Estes M. K. , Kapikian A. Z. . ( 2007; ). Rotaviruses. . In Fields Virology, , 5th edn., pp. 1917–1974. Edited by Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  9. Estes M. K. , Graham D. Y. , Mason B. B. . ( 1981; ). Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. . J Virol 39:, 879–888.[PubMed]
    [Google Scholar]
  10. Gilbert J. M. , Greenberg H. B. . ( 1998; ). Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without. . J Virol 72:, 5323–5327.[PubMed]
    [Google Scholar]
  11. Ishii K. , Ueda Y. , Matsuo K. , Matsuura Y. , Kitamura T. , Kato K. , Izumi Y. , Someya K. , Ohsu T. et al. & other authors ( 2002; ). Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. . Virology 302:, 433–444. [CrossRef] [PubMed]
    [Google Scholar]
  12. Keelapang P. , Sriburi R. , Supasa S. , Panyadee N. , Songjaeng A. , Jairungsri A. , Puttikhunt C. , Kasinrerk W. , Malasit P. , Sittisombut N. . ( 2004; ). Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. . J Virol 78:, 2367–2381. [CrossRef] [PubMed]
    [Google Scholar]
  13. Klenk H. D. , Garten W. . ( 1994; ). Host cell proteases controlling virus pathogenicity. . Trends Microbiol 2:, 39–43. [CrossRef] [PubMed]
    [Google Scholar]
  14. Klenk H. D. , Matrosovich M. , Stech J. . ( 2008; ). Avian influenza – Molecular Mechanisms of Pathogenesis and Host Range. . In Molecular Biology of Animal Viruses, pp. 253–301. Edited by Mettenleiter T. , Sabrino F. . . UK:: Caister Academic Press;.
    [Google Scholar]
  15. Kobayashi T. , Antar A. A. R. , Boehme K. W. , Danthi P. , Eby E. A. , Guglielmi K. M. , Holm G. H. , Johnson E. M. , Maginnis M. S. et al. & other authors ( 2007; ). A plasmid-based reverse genetics system for animal double-stranded RNA viruses. . Cell Host Microbe 1:, 147–157. [CrossRef] [PubMed]
    [Google Scholar]
  16. Komoto S. , Kinomoto M. , Horikoshi H. , Shiraga M. , Kurosu T. , Mukai T. , Auwanit W. , Otake T. , Oishi I. , Ikuta K. . ( 2002; ). Ability to induce p53 and caspase-mediated apoptosis in primary CD4+ T cells is variable among primary isolates of human immunodeficiency virus type 1. . AIDS Res Hum Retroviruses 18:, 435–446. [CrossRef] [PubMed]
    [Google Scholar]
  17. Komoto S. , Sasaki J. , Taniguchi K. . ( 2006; ). Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. . Proc Natl Acad Sci U S A 103:, 4646–4651. [CrossRef] [PubMed]
    [Google Scholar]
  18. Komoto S. , Kugita M. , Sasaki J. , Taniguchi K. . ( 2008; ). Generation of recombinant rotavirus with an antigenic mosaic of cross-reactive neutralization epitopes on VP4. . J Virol 82:, 6753–6757. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ludert J. E. , Krishnaney A. A. , Burns J. W. , Vo P. T. , Greenberg H. B. . ( 1996; ). Cleavage of rotavirus VP4 in vivo. . J Gen Virol 77:, 391–395. [CrossRef] [PubMed]
    [Google Scholar]
  20. Matsuo E. , Celma C. C. , Roy P. . ( 2010; ). A reverse genetics system of African horse sickness virus reveals existence of primary replication. . FEBS Lett 584:, 3386–3391. [CrossRef] [PubMed]
    [Google Scholar]
  21. Molloy S. S. , Bresnahan P. A. , Leppla S. H. , Klimpel K. R. , Thomas G. . ( 1992; ). Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. . J Biol Chem 267:, 16396–16402.[PubMed]
    [Google Scholar]
  22. Parashar U. D. , Hummelman E. G. , Bresee J. S. , Miller M. A. , Glass R. I. . ( 2003; ). Global illness and deaths caused by rotavirus disease in children. . Emerg Infect Dis 9:, 565–572.[PubMed] [CrossRef]
    [Google Scholar]
  23. Parashar U. D. , Gibson C. J. , Bresse J. S. , Glass R. I. . ( 2006; ). Rotavirus and severe childhood diarrhea. . Emerg Infect Dis 12:, 304–306.[PubMed] [CrossRef]
    [Google Scholar]
  24. Richt J. A. , Fürbringer T. , Koch A. , Pfeuffer I. , Herden C. , Bause-Niedrig I. , Garten W. . ( 1998; ). Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin. . J Virol 72:, 4528–4533.[PubMed]
    [Google Scholar]
  25. Schnell M. J. , Mebatsion T. , Conzelmann K. K. . ( 1994; ). Infectious rabies viruses from cloned cDNA. . EMBO J 13:, 4195–4203.[PubMed]
    [Google Scholar]
  26. Takahashi S. , Kasai K. , Hatsuzawa K. , Kitamura N. , Misumi Y. , Ikehara Y. , Murakami K. , Nakayama K. . ( 1993; ). A mutation of furin causes the lack of precursor-processing activity in human colon carcinoma LoVo cells. . Biochem Biophys Res Commun 195:, 1019–1026. [CrossRef] [PubMed]
    [Google Scholar]
  27. Taniguchi K. , Urasawa S. , Urasawa T. . ( 1985; ). Preparation and characterization of neutralizing monoclonal antibodies with different reactivity patterns to human rotaviruses. . J Gen Virol 66:, 1045–1053. [CrossRef] [PubMed]
    [Google Scholar]
  28. Taniguchi K. , Morita Y. , Urasawa T. , Urasawa S. . ( 1987; ). Cross-reactive neutralization epitopes on VP3 of human rotavirus: analysis with monoclonal antibodies and antigenic variants. . J Virol 61:, 1726–1730.[PubMed]
    [Google Scholar]
  29. Taniguchi K. , Nishikawa K. , Kobayashi N. , Urasawa T. , Wu H. , Gorziglia M. , Urasawa S. . ( 1994; ). Differences in plaque size and VP4 sequence found in SA11 virus clones having simian authentic VP4. . Virology 198:, 325–330. [CrossRef] [PubMed]
    [Google Scholar]
  30. Trask S. D. , Taraporewala Z. F. , Boehme K. W. , Dermody T. S. , Patton J. T. . ( 2010; ). Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. . Proc Natl Acad Sci U S A 107:, 18652–18657. [CrossRef] [PubMed]
    [Google Scholar]
  31. Troupin C. , Dehée A. , Schnuriger A. , Vende P. , Poncet D. , Garbarg-Chenon A. . ( 2010; ). Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. . J Virol 84:, 6711–6719. [CrossRef] [PubMed]
    [Google Scholar]
  32. Urasawa S. , Urasawa T. , Taniguchi K. . ( 1982; ). Three human rotavirus serotypes demonstrated by plaque neutralization of isolated strains. . Infect Immun 38:, 781–784.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033886-0
Loading
/content/journal/jgv/10.1099/vir.0.033886-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error