Mutations in the G–H loop region of ephrin-B2 can enhance Nipah virus binding and infection Free

Abstract

Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses classified in the genus of the family . The entry of henipaviruses occurs through a pH-independent membrane-fusion mechanism mediated by the cooperation of the viral attachment (G) and fusion (F) envelope glycoproteins following virion binding to susceptible host cells. Virus attachment is mediated by the interaction of the G glycoprotein with ephrin-B2 or ephrin-B3, which were identified as the functional receptors of henipavirus. Several residues of the G glycoprotein that are important for receptor binding have been determined through mutagenesis and structural analyses; however, similar approaches have not been carried out for the viral receptor ephrin-B2. Here, an alanine-scanning mutagenesis analysis was performed to identify residues of ephrin-B2 which are critical for NiV binding and entry by using an NiV-F- and -G-glycoprotein pseudotyped lentivirus assay. Results indicated that the G–H loop of ephrin-B2 was indeed critical for the interaction between ephrin-B2 and NiV-G. Unexpectedly, however, some alanine-substitution mutants located in the G–H loop enhanced the infectivity of the NiV pseudotypes, in particular an L124A mutation enhanced entry >30-fold. Further analysis of the L124A ephrin-B2 mutant demonstrated that an increased binding affinity of the mutant receptor with NiV-G was responsible for the enhanced infectivity of both pseudovirus and infectious virus. In addition, cell lines that were stably expressing the L124A mutant receptor were able to support NiV infection more efficiently than the wild-type molecule, potentially providing a new target-cell platform for viral isolation or virus-entry inhibitor screening and discovery.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033787-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2142.html?itemId=/content/journal/jgv/10.1099/vir.0.033787-0&mimeType=html&fmt=ahah

References

  1. Bishop K. A., Stantchev T. S., Hickey A. C., Khetawat D., Bossart K. N., Krasnoperov V., Gill P., Feng Y. R., Wang L. et al. 2007; Identification of Hendra virus G glycoprotein residues that are critical for receptor binding. J Virol 81:5893–5901 [View Article][PubMed]
    [Google Scholar]
  2. Bonaparte M. I., Dimitrov A. S., Bossart K. N., Crameri G., Mungall B. A., Bishop K. A., Choudhry V., Dimitrov D. S., Wang L. F. et al. 2005; Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102:10652–10657 [View Article][PubMed]
    [Google Scholar]
  3. Bossart K. N., Broder C. C. 2009; Paramyxovirus entry. In Viral Entry into Host Cells Edited by Pöhlmann S., Simmons. G. Austin, TX: Landes Bioscience;
    [Google Scholar]
  4. Bossart K. N., Tachedjian M., McEachern J. A., Crameri G., Zhu Z., Dimitrov D. S., Broder C. C., Wang L. F. 2008; Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 372:357–371 [View Article][PubMed]
    [Google Scholar]
  5. Bowden T. A., Aricescu A. R., Gilbert R. J., Grimes J. M., Jones E. Y., Stuart D. I. 2008; Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15:567–572 [View Article][PubMed]
    [Google Scholar]
  6. Chadha M. S., Comer J. A., Lowe L., Rota P. A., Rollin P. E., Bellini W. J., Ksiazek T. G., Mishra A. 2006; Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12:235–240[PubMed] [CrossRef]
    [Google Scholar]
  7. Chan Y. P., Yan L., Feng Y. R., Broder C. C. 2009; Preparation of recombinant viral glycoproteins for novel and therapeutic antibody discovery. Methods Mol Biol 525:31–58, xiii [View Article][PubMed]
    [Google Scholar]
  8. Chua K. B., Bellini W. J., Rota P. A., Harcourt B. H., Tamin A., Lam S. K., Ksiazek T. G., Rollin P. E., Zaki S. R. et al. 2000; Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–1435 [View Article][PubMed]
    [Google Scholar]
  9. Eaton B. T., Broder C. C., Middleton D., Wang L. F. 2006; Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4:23–35 [View Article][PubMed]
    [Google Scholar]
  10. Epstein J. H., Prakash V., Smith C. S., Daszak P., McLaughlin A. B., Meehan G., Field H. E., Cunningham A. A. 2008; Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg Infect Dis 14:1309–1311 [View Article][PubMed]
    [Google Scholar]
  11. Field H. E., Breed A. C., Shield J., Hedlefs R. M., Pittard K., Pott B., Summers P. M. 2007; Epidemiological perspectives on Hendra virus infection in horses and flying foxes. Aust Vet J 85:268–270 [View Article][PubMed]
    [Google Scholar]
  12. Guillaume V., Aslan H., Ainouze M., Guerbois M., Wild T. F., Buckland R., Langedijk J. P. 2006; Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. J Virol 80:7546–7554 [View Article][PubMed]
    [Google Scholar]
  13. Hickey A. C., Broder C. C. 2009; The mechanism of henipavirus fusion: examining the relationships between the attachment and fusion glycoproteins. Virol Sin 24:110–120 [View Article]
    [Google Scholar]
  14. Hsu V. P., Hossain M. J., Parashar U. D., Ali M. M., Ksiazek T. G., Kuzmin I., Niezgoda M., Rupprecht C., Bresee J., Breiman R. F. 2004; Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10:2082–2087[PubMed] [CrossRef]
    [Google Scholar]
  15. Iehlé C., Razafitrimo G., Razainirina J., Andriaholinirina N., Goodman S. M., Faure C., Georges-Courbot M. C., Rousset D., Reynes J. M. 2007; Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 13:159–161 [View Article][PubMed]
    [Google Scholar]
  16. Khetawat D., Broder C. C. 2010; A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virol J 7:312 [View Article][PubMed]
    [Google Scholar]
  17. Luby S. P., Hossain M. J., Gurley E. S., Ahmed B. N., Banu S., Khan S. U., Homaira N., Rota P. A., Rollin P. E. et al. 2009; Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis 15:1229–1235 [View Article][PubMed]
    [Google Scholar]
  18. Murai K. K., Pasquale E. B. 2003; ‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci 116:2823–2832 [View Article][PubMed]
    [Google Scholar]
  19. Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L. et al. 1995; A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97 [View Article][PubMed]
    [Google Scholar]
  20. Negrete O. A., Levroney E. L., Aguilar H. C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B. 2005; EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–405[PubMed]
    [Google Scholar]
  21. Negrete O. A., Wolf M. C., Aguilar H. C., Enterlein S., Wang W., Mühlberger E., Su S. V., Bertolotti-Ciarlet A., Flick R., Lee B. 2006; Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2:e7 [View Article][PubMed]
    [Google Scholar]
  22. Negrete O. A., Chu D., Aguilar H. C., Lee B. 2007; Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J Virol 81:10804–10814 [View Article][PubMed]
    [Google Scholar]
  23. Pernet O., Pohl C., Ainouze M., Kweder H., Buckland R. 2009; Nipah virus entry can occur by macropinocytosis. Virology 395:298–311 [View Article][PubMed]
    [Google Scholar]
  24. Reynes J. M., Counor D., Ong S., Faure C., Seng V., Molia S., Walston J., Georges-Courbot M. C., Deubel V., Sarthou J. L. 2005; Nipah virus in Lyle’s flying foxes, Cambodia. Emerg Infect Dis 11:1042–1047[PubMed] [CrossRef]
    [Google Scholar]
  25. Thiel L., Diederich S., Erbar S., Pfaff D., Augustin H. G., Maisner A. 2008; Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail. Virol J 5:163 [View Article][PubMed]
    [Google Scholar]
  26. Wacharapluesadee S., Lumlertdacha B., Boongird K., Wanghongsa S., Chanhome L., Rollin P., Stockton P., Rupprecht C. E., Ksiazek T. G., Hemachudha T. 2005; Bat Nipah virus, Thailand. Emerg Infect Dis 11:1949–1951[PubMed] [CrossRef]
    [Google Scholar]
  27. Xu K., Rajashankar K. R., Chan Y. P., Himanen J. P., Broder C. C., Nikolov D. B. 2008; Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A 105:9953–9958 [View Article][PubMed]
    [Google Scholar]
  28. Yob J. M., Field H., Rashdi A. M., Morrissy C., van der Heide B., Rota P., bin Adzhar A., White J., Daniels P. et al. 2001; Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7:439–441[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033787-0
Loading
/content/journal/jgv/10.1099/vir.0.033787-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed