1887

Abstract

We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species (PRV), formerly known as , based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033498-0
2011-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2930.html?itemId=/content/journal/jgv/10.1099/vir.0.033498-0&mimeType=html&fmt=ahah

References

  1. Ahmed R., Fields B. N.. ( 1981; ). Reassortment of genome segments between reovirus defective interfering particles and infectious virus: construction of temperature-sensitive and attenuated viruses by rescue of mutations from DI particles. . Virology 111:, 351–363. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arnold M. M., Murray K. E., Nibert M. L.. ( 2008; ). Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein μNS during reovirus infection. . Virology 375:, 412–423. [CrossRef] [PubMed]
    [Google Scholar]
  3. Attoui H., Billoir F., Cantaloube J. F., Biagini P., de Micco P., de Lamballerie X.. ( 2000; ). Strategies for the sequence determination of viral dsRNA genomes. . J Virol Methods 89:, 147–158. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bodelón G., Labrada L., Martínez-Costas J., Benavente J.. ( 2001; ). The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. . Virology 290:, 181–191. [CrossRef] [PubMed]
    [Google Scholar]
  5. Breun L. A., Broering T. J., McCutcheon A. M., Harrison S. J., Luongo C. L., Nibert M. L.. ( 2001; ). Mammalian reovirus L2 gene and λ2 core spike protein sequences and whole-genome comparisons of reoviruses type 1 Lang, type 2 Jones, and type 3 Dearing. . Virology 287:, 333–348. [CrossRef] [PubMed]
    [Google Scholar]
  6. Broering T. J., Parker J. S., Joyce P. L., Kim J., Nibert M. L.. ( 2002; ). Mammalian reovirus nonstructural protein μNS forms large inclusions and colocalizes with reovirus microtubule-associated protein μ2 in transfected cells. . J Virol 76:, 8285–8297. [CrossRef] [PubMed]
    [Google Scholar]
  7. Broering T. J., Arnold M. M., Miller C. L., Hurt J. A., Joyce P. L., Nibert M. L.. ( 2005; ). Carboxyl-proximal regions of reovirus nonstructural protein μNS necessary and sufficient for forming factory-like inclusions. . J Virol 79:, 6194–6206. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chappell J. D., Duncan R., Mertens P. P. C., Dermody T. S.. ( 2005; ). Genus Orthoreovirus . . In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses, pp. 455–465. Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A... San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  9. Chua K. B., Crameri G., Hyatt A., Yu M., Tompang M. R., Rosli J., McEachern J., Crameri S., Kumarasamy V. et al. & other authors ( 2007; ). A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. . Proc Natl Acad Sci U S A 104:, 11424–11429. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chua K. B., Voon K., Crameri G., Tan H. S., Rosli J., McEachern J. A., Suluraju S., Yu M., Wang L. F.. ( 2008; ). Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. . PLoS One 3:, e3803. [CrossRef] [PubMed]
    [Google Scholar]
  11. Clancy E. K., Duncan R.. ( 2009; ). Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell–cell membrane fusion. . J Virol 83:, 2941–2950. [CrossRef] [PubMed]
    [Google Scholar]
  12. Duncan R.. ( 1999; ). Extensive sequence divergence and phylogenetic relationships between the fusogenic and nonfusogenic orthoreoviruses: a species proposal. . Virology 260:, 316–328. [CrossRef] [PubMed]
    [Google Scholar]
  13. Edgar R. C.. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gard G. P., Marshall I. D.. ( 1973; ). Nelson Bay virus. A novel reovirus. . Arch Gesamte Virusforsch 43:, 34–42. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hall R. A., Premont R. T., Lefkowitz R. J.. ( 1999; ). Heptahelical receptor signaling: beyond the G protein paradigm. . J Cell Biol 145:, 927–932. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hsiao J., Martínez-Costas J., Benavente J., Vakharia V. N.. ( 2002; ). Cloning, expression, and characterization of avian reovirus guanylyltransferase. . Virology 296:, 288–299. [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu H. J., Lee L. H., Hsu H. W., Kuo L. C., Liao M. H.. ( 2003; ). Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. . Virology 314:, 336–349. [CrossRef] [PubMed]
    [Google Scholar]
  18. Luongo C. L., Reinisch K. M., Harrison S. C., Nibert M. L.. ( 2000; ). Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein 2. . J Biol Chem 275:, 2804–2810. [CrossRef] [PubMed]
    [Google Scholar]
  19. Martinez-Costas J., Varela R., Benavente J.. ( 1995; ). Endogenous enzymatic activities of the avian reovirus S1133: identification of the viral capping enzyme. . Virology 206:, 1017–1026. [CrossRef] [PubMed]
    [Google Scholar]
  20. McCutcheon A. M., Broering T. J., Nibert M. L.. ( 1999; ). Mammalian reovirus M3 gene sequences and conservation of coiled-coil motifs near the carboxyl terminus of the μNS protein. . Virology 264:, 16–24. [CrossRef] [PubMed]
    [Google Scholar]
  21. Miller C. L., Broering T. J., Parker J. S., Arnold M. M., Nibert M. L.. ( 2003; ). Reovirus σNS protein localizes to inclusions through an association requiring the μNS amino terminus. . J Virol 77:, 4566–4576. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pritchard L. I., Chua K. B., Cummins D., Hyatt A., Crameri G., Eaton B. T., Wang L. F.. ( 2006; ). Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia. . Arch Virol 151:, 229–239. [CrossRef] [PubMed]
    [Google Scholar]
  23. Schiff L. A., Nibert M. L., Tyler K. L.. ( 2007; ). Orthoreoviruses and their replication. . In Fields Virology, pp. 1853–1915. Edited by Knipe D. M., Griffin D. E., Lamb R. A., Straus S. E., Howley P. M., Martin M. A., Roizman B... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  24. Shen P. C., Chiou Y. F., Liu H. J., Song C. H., Su Y. P., Lee L. H.. ( 2007; ). Genetic variation of the λA and λC protein encoding genes of avian reoviruses. . Res Vet Sci 83:, 394–402. [CrossRef] [PubMed]
    [Google Scholar]
  25. Su Y. P., Su B. S., Shien J. H., Liu H. J., Lee L. H.. ( 2006; ). The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein μA, the major outer capsid protein μB, and the nonstructural protein μNS. . J Virol Methods 133:, 146–157. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tourís-Otero F., Martínez-Costas J., Vakharia V. N., Benavente J.. ( 2005; ). Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein σNS. . J Gen Virol 86:, 1159–1169. [CrossRef] [PubMed]
    [Google Scholar]
  29. Turner D. L., Duncan R., Lee P. W.. ( 1992; ). Site-directed mutagenesis of the C-terminal portion of reovirus protein σ1: evidence for a conformation-dependent receptor binding domain. . Virology 186:, 219–227. [CrossRef] [PubMed]
    [Google Scholar]
  30. Waterhouse A. M., Procter J. B., Martin D. M., Clamp M., Barton G. J.. ( 2009; ). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. . Bioinformatics 25:, 1189–1191. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wenske E. A., Chanock S. J., Krata L., Fields B. N.. ( 1985; ). Genetic reassortment of mammalian reoviruses in mice. . J Virol 56:, 613–616.[PubMed]
    [Google Scholar]
  32. Xu W., Coombs K. M.. ( 2008; ). Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein. . Virol J 5:, 153. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033498-0
Loading
/content/journal/jgv/10.1099/vir.0.033498-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2930–2936

Amino acid sequence alignment highlighting important features observed among the four different strains.

Partial sequence alignment of conserved functional domains/motifs in orthoreovirus proteins encoded by the L and M genome segments.

List of currently known strains in the species group of .

GenBank accession numbers for all PRV genome segments included in this study.

. Percentage of nucleotide and amino acid identities between L gene and l proteins of orthoreoviruses. Percentage of nucleotide and amino acid identities between M gene and m proteins of orthoreoviruses. . Percentage of nucleotide and amino acid identity between S gene and s proteins of orthoreoviruses.

[ Single PDF file] (126 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error