1887

Abstract

Cytomegalovirus (CMV) major immediate–early protein 1 (IE1) has multiple functions and is important for efficient viral infection. As does its counterpart in human CMV, murine CMV (MCMV) IE1 also functions as a disruptor of mouse-cell nuclear domain 10 (ND10), where many different gene-regulation proteins congregate. It still remains unclear how MCMV IE1 disperses ND10 and whether this dispersion could have any effect on viral replication. MCMV IE1 is 595 aa long and has multiple functional domains that have not yet been fully analysed. In this study, we dissected the IE1 molecule by truncation and/or deletion and found that the H2B homology domain (amino acid sequence NDIFERI) is required for the dispersion of ND10 by IE1. Furthermore, we made additional deletions and point mutations and found that the minimal truncation in the H2B homology domain required for IE1 to lose the ability to disperse ND10 is just 3 aa (IFE). Surprisingly, the mutated IE1 still interacted with PML and co-localized with ND10 but failed to disperse ND10. This suggests that binding to ND10 key protein is essential to, but not sufficient for, the dispersal of ND10, and that some other unknown mechanism must be involved in this biological procedure. Finally, we generated MCMV with IFE-deleted IE1 (MCMVdlIFE) and its revertant (MCMVIFERQ). Although MCMVdlIFE lost the ability to disperse ND10, plaque assays and viral gene production assays showed that the deletion of IFE did not increase viral replication in cell culture. We conclude that the dispersion of ND10 appears not to be important for MCMV replication in a mouse-cell culture.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033225-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2006.html?itemId=/content/journal/jgv/10.1099/vir.0.033225-0&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Hayward G. S. 1997; The major immediate–early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71:4599–4613[PubMed]
    [Google Scholar]
  2. Ahn J. H., Brignole E. J. III, Hayward G. S. 1998; Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol Cell Biol 18:4899–4913[PubMed]
    [Google Scholar]
  3. Borden K. L. 2008; Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon?. Biochim Biophys Acta 1783:2145–2154 [View Article][PubMed]
    [Google Scholar]
  4. Borden K. L., Culjkovic B. 2009; Perspectives in PML: a unifying framework for PML function. Front Biosci 14:497–509 [View Article][PubMed]
    [Google Scholar]
  5. Bühler B., Keil G. M., Weiland F., Koszinowski U. H. 1990; Characterization of the murine cytomegalovirus early transcription unit E1 that is induced by immediate–early proteins. J Virol 64:1907–1919[PubMed]
    [Google Scholar]
  6. Cherrington J. M., Mocarski E. S. 1989; Human cytomegalovirus IE1 transactivates the alpha promoter-enhancer via an 18-base-pair repeat element. J Virol 63:1435–1440[PubMed]
    [Google Scholar]
  7. Cosme R. C., Martínez F. P., Tang Q. 2011; Functional interaction of nuclear domain 10 and its components with cytomegalovirus after infections: cross-species host cells versus native cells. PLoS One 6:e19187 [View Article][PubMed]
    [Google Scholar]
  8. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  9. Everett R. D., Freemont P., Saitoh H., Dasso M., Orr A., Kathoria M., Parkinson J. 1998; The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591[PubMed]
    [Google Scholar]
  10. Everett R. D., Sourvinos G., Leiper C., Clements J. B., Orr A. 2004; Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol 78:1903–1917 [View Article][PubMed]
    [Google Scholar]
  11. Everett R. D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. 2006; PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995–8005 [View Article][PubMed]
    [Google Scholar]
  12. Everett R. D., Murray J., Orr A., Preston C. M. 2007; Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts. J Virol 81:10991–11004 [View Article][PubMed]
    [Google Scholar]
  13. Ghazal P., Visser A. E., Gustems M., García R., Borst E. M., Sullivan K., Messerle M., Angulo A. 2005; Elimination of IE1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture. J Virol 79:7182–7194 [View Article][PubMed]
    [Google Scholar]
  14. Greaves R. F., Mocarski E. S. 1998; Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus IE1 mutant. J Virol 72:366–379[PubMed]
    [Google Scholar]
  15. Gribaudo G., Riera L., Lembo D., De Andrea M., Gariglio M., Rudge T. L., Johnson L. F., Landolfo S. 2000; Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J Virol 74:4979–4987 [View Article][PubMed]
    [Google Scholar]
  16. Hwang J., Kalejta R. F. 2007; Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology 367:334–338 [View Article][PubMed]
    [Google Scholar]
  17. Ishov A. M., Maul G. G. 1996; The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134:815–826 [View Article][PubMed]
    [Google Scholar]
  18. Ishov A. M., Stenberg R. M., Maul G. G. 1997; Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138:5–16 [View Article][PubMed]
    [Google Scholar]
  19. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [View Article][PubMed]
    [Google Scholar]
  20. Jiang M., Entezami P., Gamez M., Stamminger T., Imperiale M. J. 2011; Functional reorganization of promyelocytic leukemia nuclear bodies during BK virus infection. MBio 2:e00281-10 [View Article][PubMed]
    [Google Scholar]
  21. Kang H., Kim E. T., Lee H. R., Park J. J., Go Y. Y., Choi C. Y., Ahn J. H. 2006; Inhibition of SUMO-independent PML oligomerization by the human cytomegalovirus IE1 protein. J Gen Virol 87:2181–2190 [View Article][PubMed]
    [Google Scholar]
  22. Keil G. M., Ebeling-Keil A., Koszinowski U. H. 1987; Immediate–early genes of murine cytomegalovirus: location, transcripts, and translation products. J Virol 61:526–533[PubMed]
    [Google Scholar]
  23. Kelly C., Van Driel R., Wilkinson G. W. 1995; Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76:2887–2893 [View Article][PubMed]
    [Google Scholar]
  24. Korioth F., Maul G. G., Plachter B., Stamminger T., Frey J. 1996; The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229:155–158 [View Article][PubMed]
    [Google Scholar]
  25. Lee H. R., Kim D. J., Lee J. M., Choi C. Y., Ahn B. Y., Hayward G. S., Ahn J. H. 2004; Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78:6527–6542 [View Article][PubMed]
    [Google Scholar]
  26. Lembo D., Gribaudo G., Hofer A., Riera L., Cornaglia M., Mondo A., Angeretti A., Gariglio M., Thelander L., Landolfo S. 2000; Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts. J Virol 74:11557–11565 [View Article][PubMed]
    [Google Scholar]
  27. Ling P. D., Peng R. S., Nakajima A., Yu J. H., Tan J., Moses S. M., Yang W. H., Zhao B., Kieff E. et al. 2005; Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 24:3565–3575 [View Article][PubMed]
    [Google Scholar]
  28. Ling P. D., Tan J., Sewatanon J., Peng R. 2008; Murine gammaherpesvirus 68 open reading frame 75c tegument protein induces the degradation of PML and is essential for production of infectious virus. J Virol 82:8000–8012 [View Article][PubMed]
    [Google Scholar]
  29. Martinez F. P., Cosme R. S., Tang Q. 2010; Murine cytomegalovirus major immediate–early protein 3 interacts with cellular and viral proteins in viral DNA replication compartments and is important for early gene activation. J Gen Virol 91:2664–2676 [CrossRef]
    [Google Scholar]
  30. Maul G. G., Negorev D. 2008; Differences between mouse and human cytomegalovirus interactions with their respective hosts at immediate early times of the replication cycle. Med Microbiol Immunol (Berl) 197:241–249 [View Article][PubMed]
    [Google Scholar]
  31. McElroy A. K., Dwarakanath R. S., Spector D. H. 2000; Dysregulation of cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein p130. J Virol 74:4192–4206 [View Article][PubMed]
    [Google Scholar]
  32. Messerle M., Bühler B., Keil G. M., Koszinowski U. H. 1992; Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate–early gene 3. J Virol 66:27–36[PubMed]
    [Google Scholar]
  33. Münch K., Keil G. M., Messerle M., Koszinowski U. H. 1988; Interaction of the 89K murine cytomegalovirus immediate–early protein with core histones. Virology 163:405–412 [View Article][PubMed]
    [Google Scholar]
  34. Münch K., Bühler B., Messerle M., Koszinowski U. H. 1991; The core histone-binding region of the murine cytomegalovirus 89K immediate early protein. J Gen Virol 72:1967–1974 [View Article][PubMed]
    [Google Scholar]
  35. Münch K., Messerle M., Plachter B., Koszinowski U. H. 1992; An acidic region of the 89K murine cytomegalovirus immediate–early protein interacts with DNA. J Gen Virol 73:499–506 [View Article][PubMed]
    [Google Scholar]
  36. Nevels M., Paulus C., Shenk T. 2004; Human cytomegalovirus immediate–early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A 101:17234–17239 [View Article][PubMed]
    [Google Scholar]
  37. Parkinson J., Lees-Miller S. P., Everett R. D. 1999; Herpes simplex virus type 1 immediate–early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J Virol 73:650–657[PubMed]
    [Google Scholar]
  38. Reddehase M. J., Simon C. O., Seckert C. K., Lemmermann N., Grzimek N. K. 2008; Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331 [View Article][PubMed]
    [Google Scholar]
  39. Saffert R. T., Kalejta R. F. 2006; Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate–early gene expression. J Virol 80:3863–3871 [View Article][PubMed]
    [Google Scholar]
  40. Saffert R. T., Kalejta R. F. 2007; Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol 81:9109–9120 [View Article][PubMed]
    [Google Scholar]
  41. Saffert R. T., Kalejta R. F. 2008; Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?. Future Virol 3:265–277 [View Article][PubMed]
    [Google Scholar]
  42. Scully A. L., Sommer M. H., Schwartz R., Spector D. H. 1995; The human cytomegalovirus IE2 86-kilodalton protein interacts with an early gene promoter via site-specific DNA binding and protein–protein associations. J Virol 69:6533–6540[PubMed]
    [Google Scholar]
  43. Shen T. H., Lin H. K., Scaglioni P. P., Yung T. M., Pandolfi P. P. 2006; The mechanisms of PML-nuclear body formation. Mol Cell 24:331–339 [View Article][PubMed]
    [Google Scholar]
  44. Sinclair J., Sissons P. 1996; Latent and persistent infections of monocytes and macrophages. Intervirology 39:293–301[PubMed]
    [Google Scholar]
  45. Stenberg R. M. 1996; The human cytomegalovirus major immediate–early gene. Intervirology 39:343–349[PubMed]
    [Google Scholar]
  46. Stenberg R. M., Stinski M. F. 1985; Autoregulation of the human cytomegalovirus major immediate–early gene. J Virol 56:676–682[PubMed]
    [Google Scholar]
  47. Stenberg R. M., Fortney J., Barlow S. W., Magrane B. P., Nelson J. A., Ghazal P. 1990; Promoter-specific trans activation and repression by human cytomegalovirus immediate–early proteins involves common and unique protein domains. J Virol 64:1556–1565[PubMed]
    [Google Scholar]
  48. Tang Q., Maul G. G. 2003; Mouse cytomegalovirus immediate–early protein 1 binds with host cell repressors to relieve suppressive effects on viral transcription and replication during lytic infection. J Virol 77:1357–1367 [View Article][PubMed]
    [Google Scholar]
  49. Tang Q., Bell P., Tegtmeyer P., Maul G. G. 2000; Replication but not transcription of simian virus 40 DNA is dependent on nuclear domain 10. J Virol 74:9694–9700 [View Article][PubMed]
    [Google Scholar]
  50. Tang Q., Li L., Ishov A. M., Revol V., Epstein A. L., Maul G. G. 2003; Determination of minimum herpes simplex virus type 1 components necessary to localize transcriptionally active DNA to ND10. J Virol 77:5821–5828 [View Article][PubMed]
    [Google Scholar]
  51. Tang Q., Li L., Maul G. G. 2005; Mouse cytomegalovirus early M112/113 proteins control the repressive effect of IE3 on the major immediate–early promoter. J Virol 79:257–263 [View Article][PubMed]
    [Google Scholar]
  52. Tavalai N., Stamminger T. 2008; New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221 [View Article][PubMed]
    [Google Scholar]
  53. Tavalai N., Papior P., Rechter S., Leis M., Stamminger T. 2006; Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018 [View Article][PubMed]
    [Google Scholar]
  54. Tavalai N., Papior P., Rechter S., Stamminger T. 2008; Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 82:126–137 [View Article][PubMed]
    [Google Scholar]
  55. Taylor R. T., Bresnahan W. A. 2005; Human cytomegalovirus immediate–early 2 gene expression blocks virus-induced beta interferon production. J Virol 79:3873–3877 [View Article][PubMed]
    [Google Scholar]
  56. Van Damme E., Laukens K., Dang T. H., Van Ostade X. 2010; A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67[PubMed] [CrossRef]
    [Google Scholar]
  57. Wang Z. F., Krasikov T., Frey M. R., Wang J., Matera A. G., Marzluff W. F. 1996; Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb. Genome Res 6:688–701 [View Article][PubMed]
    [Google Scholar]
  58. Wiebusch L., Hagemeier C. 1999; Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G1 . J Virol 73:9274–9283[PubMed]
    [Google Scholar]
  59. Wiebusch L., Neuwirth A., Grabenhenrich L., Voigt S., Hagemeier C. 2008; Cell cycle-independent expression of immediate–early gene 3 results in G1 and G2 arrest in murine cytomegalovirus-infected cells. J Virol 82:10188–10198 [View Article][PubMed]
    [Google Scholar]
  60. Wilhelmi V., Simon C. O., Podlech J., Böhm V., Däubner T., Emde S., Strand D., Renzaho A., Lemmermann N. A. et al. 2008; Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 82:9900–9916 [View Article][PubMed]
    [Google Scholar]
  61. Wilkinson G. W., Kelly C., Sinclair J. H., Rickards C. 1998; Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J Gen Virol 79:1233–1245[PubMed]
    [Google Scholar]
  62. Xu Y., Ahn J. H., Cheng M., apRhys C. M., Chiou C. J., Zong J., Matunis M. J., Hayward G. S. 2001; Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate–early protein IE1 to inhibit PML-mediated transcriptional repression. J Virol 75:10683–10695 [View Article][PubMed]
    [Google Scholar]
  63. Zhong S., Müller S., Ronchetti S., Freemont P. S., Dejean A., Pandolfi P. P. 2000; Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033225-0
Loading
/content/journal/jgv/10.1099/vir.0.033225-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error