1887

Abstract

High-mannose -linked glycans recognized by carbohydrate-binding agents (CBAs) are potential targets for topical microbicides. To better understand the mechanisms by which CBAs inhibit human immunodeficiency virus (HIV)-1 infection at the molecular level, we systematically analysed the contribution of site-specific glycans to the anti-HIV activity of CBAs by site-directed mutagenesis. Our results demonstrate that a single deglycosylation at N295 or N448 in a range of primary and T-cell-line-adapted HIV-1 isolates resulted in marked resistance to griffithsin (GRFT) but maintained the sensitivity to cyanovirin (CV-N), agglutinin (GNA) and a range of neutralizing antibodies. Unlike CV-N and GNA, the interaction between GRFT and gp120 appeared to be dependent on the specific trimeric ‘sugar tower’ including N295 and N448. This was further strengthened by the results of GRFT–Env binding experiments. Our study identifies GRFT-specific gp120 glycans and may provide information for the design of novel CBA antiviral strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033092-0
2011-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2367.html?itemId=/content/journal/jgv/10.1099/vir.0.033092-0&mimeType=html&fmt=ahah

References

  1. Alexandre K. B., Gray E. S., Lambson B. E., Moore P. L., Choge I. A., Mlisana K., Karim S. S., McMahon J., O’Keefe B. et al. & other authors ( 2010; ). Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, cyanovirin-N and scytovirin. . Virology 402:, 187–196. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balzarini J.. ( 2005; ). Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV. . Lancet Infect Dis 5:, 726–731. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balzarini J., Van Laethem K., Peumans W. J., Van Damme E. J., Bolmstedt A., Gago F., Schols D.. ( 2006; ). Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. . J Virol 80:, 8411–8421. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bewley C. A.. ( 2001; ). Solution structure of a cyanovirin-N:Man α1–2Manα complex: structural basis for high-affinity carbohydrate-mediated binding to gp120. . Structure 9:, 931–940. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bolmstedt A. J., O’Keefe B. R., Shenoy S. R., McMahon J. B., Boyd M. R.. ( 2001; ). Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. . Mol Pharmacol 59:, 949–954.[PubMed]
    [Google Scholar]
  6. Boyd M. R., Gustafson K. R., McMahon J. B., Shoemaker R. H., O’Keefe B. R., Mori T., Gulakowski R. J., Wu L., Rivera M. I. et al. & other authors ( 1997; ). Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. . Antimicrob Agents Chemother 41:, 1521–1530.[PubMed]
    [Google Scholar]
  7. Calarese D. A., Scanlan C. N., Zwick M. B., Deechongkit S., Mimura Y., Kunert R., Zhu P., Wormald M. R., Stanfield R. L. et al. & other authors ( 2003; ). Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. . Science 300:, 2065–2071. [CrossRef] [PubMed]
    [Google Scholar]
  8. Emau P., Tian B., O’Keefe B. R., Mori T., McMahon J. B., Palmer K. E., Jiang Y., Bekele G., Tsai C. C.. ( 2007; ). Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. . J Med Primatol 36:, 244–253. [CrossRef] [PubMed]
    [Google Scholar]
  9. Esser M. T., Mori T., Mondor I., Sattentau Q. J., Dey B., Berger E. A., Boyd M. R., Lifson J. D.. ( 1999; ). Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. . J Virol 73:, 4360–4371.[PubMed]
    [Google Scholar]
  10. Gallaher W. R., Ball J. M., Garry R. F., Martin-Amedee A. M., Montelaro R. C.. ( 1995; ). A general model for the surface glycoproteins of HIV and other retroviruses. . AIDS Res Hum Retroviruses 11:, 191–202. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hu Q. X., Barry A. P., Wang Z. X., Connolly S. M., Peiper S. C., Greenberg M. L.. ( 2000; ). Evolution of the human immunodeficiency virus type 1 envelope during infection reveals molecular corollaries of specificity for coreceptor utilization and AIDS pathogenesis. . J Virol 74:, 11858–11872. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hu Q., Frank I., Williams V., Santos J. J., Watts P., Griffin G. E., Moore J. P., Pope M., Shattock R. J.. ( 2004; ). Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. . J Exp Med 199:, 1065–1075. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hu Q., Napier K. B., Trent J. O., Wang Z., Taylor S., Griffin G. E., Peiper S. C., Shattock R. J.. ( 2005; ). Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization. . J Mol Biol 350:, 699–712. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hu Q., Mahmood N., Shattock R. J.. ( 2007; ). High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization. . Virology 368:, 145–154. [CrossRef] [PubMed]
    [Google Scholar]
  15. Huskens D., Van Laethem K., Vermeire K., Balzarini J., Schols D.. ( 2007; ). Resistance of HIV-1 to the broadly HIV-1-neutralizing, anti-carbohydrate antibody 2G12. . Virology 360:, 294–304. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A.. ( 1998; ). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. . Nature 393:, 648–659. [CrossRef] [PubMed]
    [Google Scholar]
  17. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J.. ( 1990; ). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. . J Biol Chem 265:, 10373–10382.[PubMed]
    [Google Scholar]
  18. Mori T., O’Keefe B. R., Sowder R. C. II, Bringans S., Gardella R., Berg S., Cochran P., Turpin J. A., Buckheit R. W. Jr et al. & other authors ( 2005; ). Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. . J Biol Chem 280:, 9345–9353. [CrossRef] [PubMed]
    [Google Scholar]
  19. O’Keefe B. R., Vojdani F., Buffa V., Shattock R. J., Montefiori D. C., Bakke J., Mirsalis J., d’Andrea A. L., Hume S. D. et al. & other authors ( 2009; ). Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. . Proc Natl Acad Sci U S A 106:, 6099–6104. [CrossRef] [PubMed]
    [Google Scholar]
  20. Reitter J. N., Means R. E., Desrosiers R. C.. ( 1998; ). A role for carbohydrates in immune evasion in AIDS. . Nat Med 4:, 679–684. [CrossRef] [PubMed]
    [Google Scholar]
  21. Sanders R. W., Venturi M., Schiffner L., Kalyanaraman R., Katinger H., Lloyd K. O., Kwong P. D., Moore J. P.. ( 2002; ). The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. . J Virol 76:, 7293–7305. [CrossRef] [PubMed]
    [Google Scholar]
  22. Scanlan C. N., Pantophlet R., Wormald M. R., Ollmann Saphire E., Stanfield R., Wilson I. A., Katinger H., Dwek R. A., Rudd P. M., Burton D. R.. ( 2002; ). The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1–>2 mannose residues on the outer face of gp120. . J Virol 76:, 7306–7321. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shattock R. J., Moore J. P.. ( 2003; ). Inhibiting sexual transmission of HIV-1 infection. . Nat Rev Microbiol 1:, 25–34. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tsai C. C., Emau P., Jiang Y., Tian B., Morton W. R., Gustafson K. R., Boyd M. R.. ( 2003; ). Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques. . AIDS Res Hum Retroviruses 19:, 535–541. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tsai C. C., Emau P., Jiang Y., Agy M. B., Shattock R. J., Schmidt A., Morton W. R., Gustafson K. R., Boyd M. R.. ( 2004; ). Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models. . AIDS Res Hum Retroviruses 20:, 11–18. [CrossRef] [PubMed]
    [Google Scholar]
  26. Van Damme E. J. M., Allen A. K., Peumans W. J.. ( 1987; ). Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. . FEBS Lett 215:, 140–144. [CrossRef]
    [Google Scholar]
  27. Wei X., Decker J. M., Wang S., Hui H., Kappes J. C., Wu X., Salazar-Gonzalez J. F., Salazar M. G., Kilby J. M. et al. & other authors ( 2003; ). Antibody neutralization and escape by HIV-1. . Nature 422:, 307–312. [CrossRef] [PubMed]
    [Google Scholar]
  28. Witvrouw M., Fikkert V., Hantson A., Pannecouque C., O’Keefe B. R., McMahon J., Stamatatos L., de Clercq E., Bolmstedt A.. ( 2005; ). Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. . J Virol 79:, 7777–7784. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wyatt R., Kwong P. D., Desjardins E., Sweet R. W., Robinson J., Hendrickson W. A., Sodroski J. G.. ( 1998; ). The antigenic structure of the HIV gp120 envelope glycoprotein. . Nature 393:, 705–711. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zhu X., Borchers C., Bienstock R. J., Tomer K. B.. ( 2000; ). Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. . Biochemistry 39:, 11194–11204. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ziółkowska N. E., O’Keefe B. R., Mori T., Zhu C., Giomarelli B., Vojdani F., Palmer K. E., McMahon J. B., Wlodawer A.. ( 2006; ). Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. . Structure 14:, 1127–1135. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ziółkowska N. E., Shenoy S. R., O’Keefe B. R., McMahon J. B., Palmer K. E., Dwek R. A., Wormald M. R., Wlodawer A.. ( 2007; ). Crystallographic, thermodynamic, and molecular modeling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffithsin. . Proteins 67:, 661–670. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033092-0
Loading
/content/journal/jgv/10.1099/vir.0.033092-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2367–2373

Conservation of the different glycosylation sites of HIV-1 Env proteins. Infectivity and sensitivity of MWS2 Env glycan mutants to carbohydrate-binding agents.

[ Single PDF file] (626 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error