1887

Abstract

We previously isolated human papillomavirus 83 (HPV83m) from a cervical smear. Sequence analysis of E6 and E7 proteins highlighted five mutations located in the second putative zinc-finger region of E6 (E6m), an important domain for protein–protein or protein–DNA interactions. Here, we show that E6m of HPV83m can trigger human primary cell proliferation and anchorage-independent growth properties, similarly to E6 of HPV16, a high-risk HPV (HR-HPV). Interestingly, we demonstrate that, in contrast to E6 of HPV16, E6m corrupts neither p53 stability nor telomerase activity, but acts as a specific modulator of the transcriptional machinery. By studying E6m reversion mutants, we confirmed the importance of the second zinc-finger domain in triggering the observed upregulation of cell growth and of the transcriptional machinery. Reversion of these mutations in E6m (to yield strain E6r) fully abolished the oncogenic potential of E6m, transforming the phenotype of E6 from a high-risk to a low-risk phenotype. Importantly, our data define the importance of a cluster of mutations in the second zinc finger of E6m in increasing the oncogenic potential of HPV83.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032888-0
2011-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2428.html?itemId=/content/journal/jgv/10.1099/vir.0.032888-0&mimeType=html&fmt=ahah

References

  1. Albrecht V., Chevallier A., Bongain A., Lefebvre J. C., Giordanengo V.. ( 2007; ). Immunohistochemical and molecular study of severe cervical dysplasia associated with HPV-83. . Gynecol Oncol 105:, 252–255. [CrossRef] [PubMed]
    [Google Scholar]
  2. Asadurian Y., Kurilin H., Lichtig H., Jackman A., Gonen P., Tommasino M., Zehbe I., Sherman L.. ( 2007; ). Activities of human papillomavirus 16 E6 natural variants in human keratinocytes. . J Med Virol 79:, 1751–1760. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brimer N., Lyons C., Vande Pol S. B.. ( 2007; ). Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. . Virology 358:, 303–310. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brown D. R., McClowry T. L., Woods K., Fife K. H.. ( 1999; ). Nucleotide sequence and characterization of human papillomavirus type 83, a novel genital papillomavirus. . Virology 260:, 165–172. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brown D. R., Legge D., Qadadri B.. ( 2002; ). Distribution of human papillomavirus types in cervicovaginal washings from women evaluated in a sexually transmitted diseases clinic. . Sex Transm Dis 29:, 763–768. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cajero-Juárez M., Avila B., Ochoa A., Garrido-Guerrero E., Varela-Echavarría A., Martínez de la Escalera G., Clapp C.. ( 2002; ). Immortalization of bovine umbilical vein endothelial cells: a model for the study of vascular endothelium. . Eur J Cell Biol 81:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  7. Capra G., Giovannelli L., Bellavia C., Migliore M. C., Caleca M. P., Perino A., Ammatuna P.. ( 2008; ). HPV genotype prevalence in cytologically abnormal cervical samples from women living in south Italy. . Virus Res 133:, 195–200. [CrossRef] [PubMed]
    [Google Scholar]
  8. Charneau P., Alizon M., Clavel F.. ( 1992; ). A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. . J Virol 66:, 2814–2820.[PubMed]
    [Google Scholar]
  9. Clavel F., Charneau P.. ( 1994; ). Fusion from without directed by human immunodeficiency virus particles. . J Virol 68:, 1179–1185.[PubMed]
    [Google Scholar]
  10. Clere N., Bermont L., Fauconnet S., Lascombe I., Saunier M., Vettoretti L., Plissonnier M. L., Mougin C.. ( 2007; ). The human papillomavirus type 18 E6 oncoprotein induces Vascular Endothelial Growth Factor 121 (VEGF121) transcription from the promoter through a p53-independent mechanism. . Exp Cell Res 313:, 3239–3250. [CrossRef] [PubMed]
    [Google Scholar]
  11. Crook T., Tidy J. A., Vousden K. H.. ( 1991; ). Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. . Cell 67:, 547–556. [CrossRef] [PubMed]
    [Google Scholar]
  12. Da Costa M. M., Hogeboom C. J., Holly E. A., Palefsky J. M.. ( 2002; ). Increased risk of high-grade anal neoplasia associated with a human papillomavirus type 16 E6 sequence variant. . J Infect Dis 185:, 1229–1237. [CrossRef] [PubMed]
    [Google Scholar]
  13. de Cremoux P., de la Rochefordière A., Savignoni A., Kirova Y., Alran S., Fourchotte V., Plancher C., Thioux M., Salmon R. J. et al. & other authors ( 2009; ). Different outcome of invasive cervical cancer associated with high-risk versus intermediate-risk HPV genotype. . Int J Cancer 124:, 778–782. [CrossRef] [PubMed]
    [Google Scholar]
  14. Desaintes C., Hallez S., Van Alphen P., Burny A.. ( 1992; ). Transcriptional activation of several heterologous promoters by the E6 protein of human papillomavirus type 16. . J Virol 66:, 325–333.[PubMed]
    [Google Scholar]
  15. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H.. ( 2004; ). Classification of papillomaviruses. . Virology 324:, 17–27. [CrossRef] [PubMed]
    [Google Scholar]
  16. Du M., Fan X., Hong E., Chen J. J.. ( 2002; ). Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. . Biochem Biophys Res Commun 296:, 962–969. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ducrest A. L., Szutorisz H., Lingner J., Nabholz M.. ( 2002; ). Regulation of the human telomerase reverse transcriptase gene. . Oncogene 21:, 541–552. [CrossRef] [PubMed]
    [Google Scholar]
  18. Duffy C. L., Phillips S. L., Klingelhutz A. J.. ( 2003; ). Microarray analysis identifies differentiation-associated genes regulated by human papillomavirus type 16 E6. . Virology 314:, 196–205. [CrossRef] [PubMed]
    [Google Scholar]
  19. Filippova M., Song H., Connolly J. L., Dermody T. S., Duerksen-Hughes P. J.. ( 2002; ). The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. . J Biol Chem 277:, 21730–21739. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gewin L., Myers H., Kiyono T., Galloway D. A.. ( 2004; ). Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. . Genes Dev 18:, 2269–2282. [CrossRef] [PubMed]
    [Google Scholar]
  21. Grodzki M., Besson G., Clavel C., Arslan A., Franceschi S., Birembaut P., Tommasino M., Zehbe I.. ( 2006; ). Increased risk for cervical disease progression of French women infected with the human papillomavirus type 16 E6-350G variant. . Cancer Epidemiol Biomarkers Prev 15:, 820–822. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T.. ( 1989; ). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. . EMBO J 8:, 3905–3910.[PubMed]
    [Google Scholar]
  23. Horikawa I., Barrett J. C.. ( 2003; ). Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. . Carcinogenesis 24:, 1167–1176. [CrossRef] [PubMed]
    [Google Scholar]
  24. Howley P. M., Münger K., Werness B. A., Phelps W. C., Schlegel R.. ( 1989; ). Molecular mechanisms of transformation by the human papillomaviruses. . Princess Takamatsu Symp 20:, 199–206.[PubMed]
    [Google Scholar]
  25. Huibregtse J. M., Scheffner M., Howley P. M.. ( 1991; ). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. . EMBO J 10:, 4129–4135.[PubMed]
    [Google Scholar]
  26. Katzenellenbogen R. A., Egelkrout E. M., Vliet-Gregg P., Gewin L. C., Gafken P. R., Galloway D. A.. ( 2007; ). NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. . J Virol 81:, 3786–3796. [CrossRef] [PubMed]
    [Google Scholar]
  27. Katzenellenbogen R. A., Vliet-Gregg P., Xu M., Galloway D. A.. ( 2009; ). NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. . J Virol 83:, 6446–6456. [CrossRef] [PubMed]
    [Google Scholar]
  28. Li X., Coffino P.. ( 1996; ). High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. . J Virol 70:, 4509–4516.[PubMed]
    [Google Scholar]
  29. Liu Y., Chen J. J., Gao Q., Dalal S., Hong Y., Mansur C. P., Band V., Androphy E. J.. ( 1999; ). Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. . J Virol 73:, 7297–7307.[PubMed]
    [Google Scholar]
  30. Liu X., Yuan H., Fu B., Disbrow G. L., Apolinario T., Tomaic V., Kelley M. L., Baker C. C., Huibregtse J., Schlegel R.. ( 2005; ). The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. . J Biol Chem 280:, 10807–10816. [CrossRef] [PubMed]
    [Google Scholar]
  31. Liu X., Dakic A., Chen R., Disbrow G. L., Zhang Y., Dai Y., Schlegel R.. ( 2008; ). Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. . J Virol 82:, 11568–11576. [CrossRef] [PubMed]
    [Google Scholar]
  32. Liu X., Dakic A., Zhang Y., Dai Y., Chen R., Schlegel R.. ( 2009; ). HPV E6 protein interacts physically and functionally with the cellular telomerase complex. . Proc Natl Acad Sci U S A 106:, 18780–18785. [CrossRef] [PubMed]
    [Google Scholar]
  33. López-Ocejo O., Viloria-Petit A., Bequet-Romero M., Mukhopadhyay D., Rak J., Kerbel R. S.. ( 2000; ). Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. . Oncogene 19:, 4611–4620. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mantovani F., Banks L.. ( 2001; ). The human papillomavirus E6 protein and its contribution to malignant progression. . Oncogene 20:, 7874–7887. [CrossRef] [PubMed]
    [Google Scholar]
  35. McLaughlin-Drubin M. E., Münger K.. ( 2009; ). Oncogenic activities of human papillomaviruses. . Virus Res 143:, 195–208. [CrossRef] [PubMed]
    [Google Scholar]
  36. Menzo S., Ciavattini A., Bagnarelli P., Marinelli K., Sisti S., Clementi M.. ( 2008; ). Molecular epidemiology and pathogenic potential of underdiagnosed human papillomavirus types. . BMC Microbiol 8:, 112. [CrossRef] [PubMed]
    [Google Scholar]
  37. Miller A. D., Rosman G. J.. ( 1989; ). Improved retroviral vectors for gene transfer and expression. . Biotechniques 7:, 980–982, 984–986, 989–990.[PubMed]
    [Google Scholar]
  38. Moody C. A., Laimins L. A.. ( 2010; ). Human papillomavirus oncoproteins: pathways to transformation. . Nat Rev Cancer 10:, 550–560. [CrossRef] [PubMed]
    [Google Scholar]
  39. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R.. ( 1989; ). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. . J Virol 63:, 4417–4421.[PubMed]
    [Google Scholar]
  40. Muñoz N.. ( 2000; ). Human papillomavirus and cancer: the epidemiological evidence. . J Clin Virol 19:, 1–5. [CrossRef] [PubMed]
    [Google Scholar]
  41. Muñoz N., Bosch F. X., de Sanjosé S., Herrero R., Castellsagué X., Shah K. V., Snijders P. J., Meijer C. J..International Agency for Research on Cancer Multicenter Cervical Cancer Study Group ( 2003; ). Epidemiologic classification of human papillomavirus types associated with cervical cancer. . N Engl J Med 348:, 518–527. [CrossRef] [PubMed]
    [Google Scholar]
  42. Nakagawa S., Watanabe S., Yoshikawa H., Taketani Y., Yoshiike K., Kanda T.. ( 1995; ). Mutational analysis of human papillomavirus type 16 E6 protein: transforming function for human cells and degradation of p53 in vitro . . Virology 212:, 535–542. [CrossRef] [PubMed]
    [Google Scholar]
  43. Richard C., Lanner C., Naryzhny S. N., Sherman L., Lee H., Lambert P. F., Zehbe I.. ( 2010; ). The immortalizing and transforming ability of two common human papillomavirus 16 E6 variants with different prevalences in cervical cancer. . Oncogene 29:, 3435–3445. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ronco L. V., Karpova A. Y., Vidal M., Howley P. M.. ( 1998; ). Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. . Genes Dev 12:, 2061–2072. [CrossRef] [PubMed]
    [Google Scholar]
  45. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M.. ( 1990; ). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. . Cell 63:, 1129–1136. [CrossRef] [PubMed]
    [Google Scholar]
  46. Scheffner M., Münger K., Byrne J. C., Howley P. M.. ( 1991; ). The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. . Proc Natl Acad Sci U S A 88:, 5523–5527. [CrossRef] [PubMed]
    [Google Scholar]
  47. Scheffner M., Huibregtse J. M., Vierstra R. D., Howley P. M.. ( 1993; ). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. . Cell 75:, 495–505. [CrossRef] [PubMed]
    [Google Scholar]
  48. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H.. ( 1985; ). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. . Nature 314:, 111–114. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sherman L., Itzhaki H., Jackman A., Chen J. J., Koval D., Schlegel R.. ( 2002; ). Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP. . Virology 292:, 309–320. [CrossRef] [PubMed]
    [Google Scholar]
  50. Si-Mohamed A., Ndjoyi-Mbiguino A., Cuschieri K., Onas I. N., Colombet I., Ozouaki F., Goff J. L., Cubie H., Bélec L.. ( 2005; ). High prevalence of high-risk oncogenic human papillomaviruses harboring atypical distribution in women of childbearing age living in Libreville, Gabon. . J Med Virol 77:, 430–438. [CrossRef] [PubMed]
    [Google Scholar]
  51. Storey A., Massimi P., Dawson K., Banks L.. ( 1995; ). Conditional immortalization of primary cells by human papillomavirus type 18 E6 and EJ-ras defines an E6 activity in G0/G1 phase which can be substituted for mutations in p53. . Oncogene 11:, 653–661.[PubMed]
    [Google Scholar]
  52. Veldman T., Horikawa I., Barrett J. C., Schlegel R.. ( 2001; ). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. . J Virol 75:, 4467–4472. [CrossRef] [PubMed]
    [Google Scholar]
  53. Veldman T., Liu X., Yuan H., Schlegel R.. ( 2003; ). Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. . Proc Natl Acad Sci U S A 100:, 8211–8216. [CrossRef] [PubMed]
    [Google Scholar]
  54. Watanabe S., Kanda T., Yoshiike K.. ( 1989; ). Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. . J Virol 63:, 965–969.[PubMed]
    [Google Scholar]
  55. Wege H., Chui M. S., Le H. T., Tran J. M., Zern M. A.. ( 2003; ). SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity. . Nucleic Acids Res 31:, E3–E3. [CrossRef] [PubMed]
    [Google Scholar]
  56. Werness B. A., Levine A. J., Howley P. M.. ( 1990; ). Association of human papillomavirus types 16 and 18 E6 proteins with p53. . Science 248:, 76–79. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wu Y., Chen Y., Li L., Yu G., He Y., Zhang Y.. ( 2006; ). Analysis of mutations in the E6/E7 oncogenes and L1 gene of human papillomavirus 16 cervical cancer isolates from China. . J Gen Virol 87:, 1181–1188. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yugawa T., Kiyono T.. ( 2009; ). Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. . Rev Med Virol 19:, 97–113. [CrossRef] [PubMed]
    [Google Scholar]
  59. Zehbe I., Wilander E., Delius H., Tommasino M.. ( 1998; ). Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. . Cancer Res 58:, 829–833.[PubMed]
    [Google Scholar]
  60. Zehbe I., Richard C., DeCarlo C. A., Shai A., Lambert P. F., Lichtig H., Tommasino M., Sherman L.. ( 2009; ). Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. . Virology 383:, 69–77. [CrossRef] [PubMed]
    [Google Scholar]
  61. Zuna R. E., Moore W. E., Shanesmith R. P., Dunn S. T., Wang S. S., Schiffman M., Blakey G. L., Teel T.. ( 2009; ). Association of HPV16 E6 variants with diagnostic severity in cervical cytology samples of 354 women in a US population. . Int J Cancer 125:, 2609–2613. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032888-0
Loading
/content/journal/jgv/10.1099/vir.0.032888-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2428–2436

Sequence alignment comparing the amino acid sequences of the E6 proteins of the new variant HPV83m, the reference sequence of HPV83, and the different HR-HPVs and LR-HPVs.

[ PDF file] (1.35 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error