1887

Abstract

The non-structural Pns9 protein of rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family . Immunofluorescence and immunoelectron microscopy of RGDV-infected vector cells in monolayers, using antibodies against Pns9 of RGDV and expression of Pns9 in cells, demonstrated that Pns9 is the minimal viral factor necessary for formation of viroplasm inclusion during infection by RGDV. When Pns9 in solution was observed under a conventional electron microscope, it appeared as ring-like aggregates of approximately 100 Å in diameter. Cryo-electron microscopic analysis of these aggregates revealed cylinders of octameric Pns9, whose dimensions were similar to those observed under the conventional electron microscope. Octamerization of Pns9 in solution was confirmed by the results of size-exclusion chromatography. Among proteins of viruses that belong to the family whose three-dimensional structures are available, a matrix protein of the viroplasm of rotavirus, NSP2, forms similar octamers, an observation that suggests similar roles for Pns9 and NSP2 in morphogenesis in animal-infecting and in plant-infecting reoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032524-0
2011-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2214.html?itemId=/content/journal/jgv/10.1099/vir.0.032524-0&mimeType=html&fmt=ahah

References

  1. Boccardo G. , Milne R. G. , Disthaporn S. , Chettanachit D. , Putta M. . ( 1985; ). Morphology and nucleic acid of rice gall dwarf virus. . Intervirology 23:, 167–171. [CrossRef] [PubMed]
    [Google Scholar]
  2. Eaton B. T. , Hyatt A. D. , White J. R. . ( 1987; ). Association of bluetongue virus with the cytoskeleton. . Virology 157:, 107–116. [CrossRef] [PubMed]
    [Google Scholar]
  3. Eichwald C. , Rodriguez J. F. , Burrone O. R. . ( 2004; ). Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. . J Gen Virol 85:, 625–634. [CrossRef] [PubMed]
    [Google Scholar]
  4. Fabbretti E. , Afrikanova I. , Vascotto F. , Burrone O. R. . ( 1999; ). Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo . . J Gen Virol 80:, 333–339.[PubMed]
    [Google Scholar]
  5. Hibi T. , Omura T. , Saito Y. . ( 1984; ). Double-stranded RNA of rice gall dwarf virus. . J Gen Virol 65:, 1585–1590. [CrossRef]
    [Google Scholar]
  6. Ichimi K. , Kikuchi A. , Moriyasu Y. , Zhong B. , Hagiwara K. , Kamiunten H. , Omura T. . ( 2002; ). Sequence analysis and GTP-binding ability of the minor core protein P5 of Rice gall dwarf virus . . Jpn Agric Res Q 36:, 83–87.[CrossRef]
    [Google Scholar]
  7. Jayaram H. , Taraporewala Z. , Patton J. T. , Prasad B. V. V. . ( 2002; ). Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. . Nature 417:, 311–315. [CrossRef] [PubMed]
    [Google Scholar]
  8. Jiang X. F. , Jayaram H. , Kumar M. , Ludtke S. J. , Estes M. K. , Prasad B. V. V. . ( 2006; ). Cryoelectron microscopy structures of rotavirus NSP2–NSP5 and NSP2–RNA complexes: implications for genome replication. . J Virol 80:, 10829–10835. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kattoura M. D. , Chen X. , Patton J. T. . ( 1994; ). The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. . Virology 202:, 803–813. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kimura I. . ( 1986; ). A study of rice dwarf virus in vector cell monolayers by fluorescent antibody focus counting. . J Gen Virol 67:, 2119–2124. [CrossRef]
    [Google Scholar]
  11. Koganezawa H. , Hibino H. , Motoyoshi F. , Kato H. , Noda H. , Ishikawa K. , Omura T. . ( 1990; ). Nucleotide sequence of segment S9 of the genome of rice gall dwarf virus. . J Gen Virol 71:, 1861–1863. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kumar M. , Jayaram H. , Vasquez-Del Carpio R. , Jiang X. , Taraporewala Z. F. , Jacobson R. H. , Patton J. T. , Prasad B. V. V. . ( 2007; ). Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals a nucleoside diphosphate kinase-like activity. . J Virol 81:, 12272–12284. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lima C. D. , Klein M. G. , Hendrickson W. A. . ( 1997; ). Structure-based analysis of catalysis and substrate definition in the HIT protein family. . Science 278:, 286–290. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ludtke S. J. , Baldwin P. R. , Chiu W. . ( 1999; ). eman: semiautomated software for high-resolution single-particle reconstructions. . J Struct Biol 128:, 82–97. [CrossRef] [PubMed]
    [Google Scholar]
  15. Maroniche G. A. , Mongelli V. C. , Peralta A. V. , Distéfano A. J. , Llauger G. , Taboga O. A. , Hopp E. H. , del Vas M. . ( 2010; ). Functional and biochemical properties of Mal de Río Cuarto virus (Fijivirus, Reoviridae) P9-1 viroplasm protein show further similarities to animal reovirus counterparts. . Virus Res 152:, 96–103. [CrossRef] [PubMed]
    [Google Scholar]
  16. McNulty M. S. , Curran W. L. , McFerran J. B. . ( 1976; ). The morphogenesis of a cytopathic bovine rotavirus in Madin–Darby bovine kidney cells. . J Gen Virol 33:, 503–508. [CrossRef] [PubMed]
    [Google Scholar]
  17. Morinaka T. , Putta M. , Chettanachit D. , Parejarearn A. , Disthaporn S. , Omura T. , Inoue H. . ( 1982; ). Transmission of Rice gall dwarf virus by cicadellid leafhoppers Recilia dorsalis and Nephotettix nigropictus in Thailand. . Plant Dis 66:, 703–704. [CrossRef]
    [Google Scholar]
  18. Moriyasu Y. , Ishikawa K. , Kikuchi A. , Imanishi S. , Tomita S. , Akutsu K. , Omura T. . ( 2000; ). Sequence analysis of Pns11, a nonstructural protein of rice gall dwarf virus, and its expression and detection in infected rice plants and vector insects. . Virus Genes 20:, 237–241. [CrossRef] [PubMed]
    [Google Scholar]
  19. Moriyasu Y. , Maruyama-Funatsuki W. , Kikuchi A. , Ichimi K. , Zhong B. , Yan J. , Zhu Y. , Suga H. , Watanabe Y. et al. ( 2007; ). Molecular analysis of the genome segments S1, S4, S6, S7 and S12 of a Rice gall dwarf virus isolate from Thailand; completion of the genomic sequence. . Arch Virol 152:, 1315–1322. [CrossRef] [PubMed]
    [Google Scholar]
  20. Noda H. , Ishikawa K. , Hibino H. , Kato H. , Omura T. . ( 1991; ). Nucleotide sequences of genome segments S8, encoding a capsid protein, and S10, encoding a 36K protein, of rice gall dwarf virus. . J Gen Virol 72:, 2837–2842. [CrossRef] [PubMed]
    [Google Scholar]
  21. Omura T. , Morinaka T. , Inoue H. , Saito Y. . ( 1982; ). Purification and some properties of Rice gall dwarf virus, a new phytoreovirus. . Phytopathology 72:, 1246–1249. [CrossRef]
    [Google Scholar]
  22. Omura T. , Minobe Y. , Matsuoka M. , Nozu Y. , Tsuchizaki T. , Saito Y. . ( 1985; ). Location of structural proteins in particles of rice gall dwarf virus. . J Gen Virol 66:, 811–815. [CrossRef]
    [Google Scholar]
  23. Omura T. , Kimura I. , Tsuchizaki T. , Saito Y. . ( 1988; ). Infection by rice gall dwarf virus of cultured monolayers of leafhopper cells. . J Gen Virol 69:, 429–432. [CrossRef]
    [Google Scholar]
  24. Pettersen E. F. , Goddard T. D. , Huang C. C. , Couch G. S. , Greenblatt D. M. , Meng E. C. , Ferrin T. E. . ( 2004; ). ucsf Chimera – a visualization system for exploratory research and analysis. . J Comput Chem 25:, 1605–1612. [CrossRef] [PubMed]
    [Google Scholar]
  25. Prasad B. V. V. , Rothnagel R. , Zeng C. Q.-Y. , Jakana J. , Lawton J. A. , Chiu W. , Estes M. K. . ( 1996; ). Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. . Nature 382:, 471–473. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sharpe A. H. , Chen L. B. , Fields B. N. . ( 1982; ). The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. . Virology 120:, 399–411. [CrossRef] [PubMed]
    [Google Scholar]
  27. Taraporewala Z. F. , Patton J. T. . ( 2001; ). Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. . J Virol 75:, 4519–4527. [CrossRef] [PubMed]
    [Google Scholar]
  28. Taraporewala Z. F. , Chen D. , Patton J. T. . ( 1999; ). Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. . J Virol 73:, 9934–9943.[PubMed]
    [Google Scholar]
  29. Taraporewala Z. F. , Jiang X. , Vasquez-Del Carpio R. , Jayaram H. , Prasad B. V. V. , Patton J. T. . ( 2006; ). Structure–function analysis of rotavirus NSP2 octamer by using a novel complementation system. . J Virol 80:, 7984–7994. [CrossRef] [PubMed]
    [Google Scholar]
  30. Touris-Otero F. , Martínez-Costas J. , Vakharia V. N. , Benavente J. . ( 2004; ). Avian reovirus nonstructural protein σNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures. . Virology 319:, 94–106. [CrossRef] [PubMed]
    [Google Scholar]
  31. van Heel M. , Harauz G. , Orlova E. V. , Schmidt R. , Schatz M. . ( 1996; ). A new generation of the imagic image processing system. . J Struct Biol 116:, 17–24. [CrossRef] [PubMed]
    [Google Scholar]
  32. Vasquez-Del Carpio R. , Gonzalez-Nilo F. D. , Riadi G. , Taraporewala Z. F. , Patton J. T. . ( 2006; ). Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. . J Mol Biol 362:, 539–554. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wei T. , Shimizu T. , Hagiwara K. , Kikuchi A. , Moriyasu Y. , Suzuki N. , Chen H. , Omura T. . ( 2006; ). Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes. . J Gen Virol 87:, 429–438. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wei T. , Uehara-Ichiki T. , Miyazaki N. , Hibino H. , Iwasaki K. , Omura T. . ( 2009; ). Association of Rice gall dwarf virus with microtubules is necessary for viral release from cultured insect vector cells. . J Virol 83:, 10830–10835. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yan J. , Tomaru M. , Takahashi A. , Kimura I. , Hibino H. , Omura T. . ( 1996; ). P2 protein encoded by genome segment S2 of rice dwarf phytoreovirus is essential for virus infection. . Virology 224:, 539–541. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zhang C. , Liu Y. , Liu L. , Lou Z. , Zhang H. , Miao H. , Hu X. , Pang Y. , Qiu B. . ( 2008; ). Rice black streaked dwarf virus P9-1, an α-helical protein, self-interacts and forms viroplasms in vivo . . J Gen Virol 89:, 1770–1776. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032524-0
Loading
/content/journal/jgv/10.1099/vir.0.032524-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error