1887

Abstract

Human papillomavirus (HPV) life cycle requires extensive manipulation of cell signalling to provide conditions adequate for viral replication within the stratified epithelia. In this regard, we show that the E2 regulatory protein of α, β and -HPV genotypes enhances tumour necrosis factor (TNF)-induced activation of nuclear factor kappa B (NF-κB). This activation is mediated by the N-terminal domain of E2, but does not rely on its transcriptional properties. It is independent of the NF-κB regulator Tax1BP1, which nevertheless interacts with all the E2 proteins. E2 specifically activates NF-κB pathways induced by TNF, while interleukin-1-induced pathways are not affected. E2 stimulates the activating K63-linked ubiquitination of TRAF5, and interacts with both TRAF5 and TRAF6. Our data suggest that E2 potentiates TNF-induced NF-κB signalling mediated by TRAF5 activation through direct binding. Since NF-κB controls epithelial differentiation, this activity may be involved in the commitment of infected keratinocytes to proliferation arrest and differentiation, both required for the implementation of the productive viral cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032466-0
2011-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2422.html?itemId=/content/journal/jgv/10.1099/vir.0.032466-0&mimeType=html&fmt=ahah

References

  1. Basile J. R., Zacny V., Münger K.. ( 2001; ). The cytokines tumor necrosis factor-alpha (TNF-α) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. . J Biol Chem 276:, 22522–22528. [CrossRef] [PubMed]
    [Google Scholar]
  2. Basile J. R., Eichten A., Zacny V., Münger K.. ( 2003; ). NF-κB-mediated induction of p21(Cip1/Waf1) by tumor necrosis factor alpha induces growth arrest and cytoprotection in normal human keratinocytes. . Mol Cancer Res 1:, 262–270.[PubMed]
    [Google Scholar]
  3. Bellanger S., Demeret C., Goyat S., Thierry F.. ( 2001; ). Stability of the human papillomavirus type 18 E2 protein is regulated by a proteasome degradation pathway through its amino-terminal transactivation domain. . J Virol 75:, 7244–7251. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bellanger S., Blachon S., Mechali F., Bonne-Andrea C., Thierry F.. ( 2005; ). High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability. . Cell Cycle 4:, 1608–1615. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blachon S., Bellanger S., Demeret C., Thierry F.. ( 2005; ). Nucleo-cytoplasmic shuttling of high risk human papillomavirus E2 proteins induces apoptosis. . J Biol Chem 280:, 36088–36098. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen Z. J., Sun L. J.. ( 2009; ). Nonproteolytic functions of ubiquitin in cell signaling. . Mol Cell 33:, 275–286. [CrossRef] [PubMed]
    [Google Scholar]
  7. Desaintes C., Demeret C.. ( 1996; ). Control of papillomavirus DNA replication and transcription. . Semin Cancer Biol 7:, 339–347. [CrossRef] [PubMed]
    [Google Scholar]
  8. Desaintes C., Goyat S., Garbay S., Yaniv M., Thierry F.. ( 1999; ). Papillomavirus E2 induces p53-independent apoptosis in HeLa cells. . Oncogene 18:, 4538–4545. [CrossRef] [PubMed]
    [Google Scholar]
  9. Doorbar J.. ( 2006; ). Molecular biology of human papillomavirus infection and cervical cancer. . Clin Sci (Lond) 110:, 525–541. [CrossRef] [PubMed]
    [Google Scholar]
  10. Habelhah H., Takahashi S., Cho S. G., Kadoya T., Watanabe T., Ronai Z.. ( 2004; ). Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. . EMBO J 23:, 322–332. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hadaschik D., Hinterkeuser K., Oldak M., Pfister H. J., Smola-Hess S.. ( 2003; ). The papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation. . J Virol 77:, 5253–5265. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hiscott J., Kwon H., Génin P.. ( 2001; ). Hostile takeovers: viral appropriation of the NF-κB pathway. . J Clin Invest 107:, 143–151. [CrossRef] [PubMed]
    [Google Scholar]
  13. James M. A., Lee J. H., Klingelhutz A. J.. ( 2006; ). Human papillomavirus type 16 E6 activates NF-κB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. . J Virol 80:, 5301–5307. [CrossRef] [PubMed]
    [Google Scholar]
  14. Journo C., Filipe J., About F., Chevalier S. A., Afonso P. V., Brady J. N., Flynn D., Tangy F., Israël A. et al. & other authors ( 2009; ). NRP/Optineurin Cooperates with TAX1BP1 to potentiate the activation of NF-κB by human T-lymphotropic virus type 1 tax protein. . PLoS Pathog 5:, e1000521. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lamothe B., Besse A., Campos A. D., Webster W. K., Wu H., Darnay B. G.. ( 2007; ). Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. . J Biol Chem 282:, 4102–4112. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lomaga M. A., Yeh W. C., Sarosi I., Duncan G. S., Furlonger C., Ho A., Morony S., Capparelli C., Van G. et al. & other authors ( 1999; ). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. . Genes Dev 13:, 1015–1024. [CrossRef] [PubMed]
    [Google Scholar]
  17. McBride A. A., Oliveira J. G., McPhillips M. G.. ( 2006; ). Partitioning viral genomes in mitosis: same idea, different targets. . Cell Cycle 5:, 1499–1502. [CrossRef] [PubMed]
    [Google Scholar]
  18. Nair A., Venkatraman M., Maliekal T. T., Nair B., Karunagaran D.. ( 2003; ). NF-κB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. . Oncogene 22:, 50–58. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nees M., Geoghegan J. M., Hyman T., Frank S., Miller L., Woodworth C. D.. ( 2001; ). Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. . J Virol 75:, 4283–4296. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oldak M., Smola H., Aumailley M., Rivero F., Pfister H., Smola-Hess S.. ( 2004; ). The human papillomavirus type 8 E2 protein suppresses β4-integrin expression in primary human keratinocytes. . J Virol 78:, 10738–10746. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pfefferle R., Marcuzzi G. P., Akgül B., Kasper H. U., Schulze F., Haase I., Wickenhauser C., Pfister H.. ( 2008; ). The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. . J Invest Dermatol 128:, 2310–2315. [CrossRef] [PubMed]
    [Google Scholar]
  22. Shembade N., Harhaj N. S., Liebl D. J., Harhaj E. W.. ( 2007; ). Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. . EMBO J 26:, 3910–3922. [CrossRef] [PubMed]
    [Google Scholar]
  23. Spitkovsky D., Hehner S. P., Hofmann T. G., Möller A., Schmitz M. L.. ( 2002; ). The human papillomavirus oncoprotein E7 attenuates NF-κB activation by targeting the IκB kinase complex. . J Biol Chem 277:, 25576–25582. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tada K., Okazaki T., Sakon S., Kobarai T., Kurosawa K., Yamaoka S., Hashimoto H., Mak T. W., Yagita H. et al. & other authors ( 2001; ). Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. . J Biol Chem 276:, 36530–36534. [CrossRef] [PubMed]
    [Google Scholar]
  25. Thierry F., Demeret C.. ( 2008; ). Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins. . Cell Death Differ 15:, 1356–1363. [CrossRef] [PubMed]
    [Google Scholar]
  26. Thierry F., Dostatni N., Arnos F., Yaniv M.. ( 1990; ). Cooperative activation of transcription by bovine papillomavirus type 1 E2 can occur over a large distance. . Mol Cell Biol 10:, 4431–4437.[PubMed]
    [Google Scholar]
  27. Wang H. K., Duffy A. A., Broker T. R., Chow L. T.. ( 2009a; ). Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. . Genes Dev 23:, 181–194. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wang X., Naidu S. R., Sverdrup F., Androphy E. J.. ( 2009b; ). Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability. . J Virol 83:, 2274–2284. [CrossRef] [PubMed]
    [Google Scholar]
  29. Xu P., Duong D. M., Seyfried N. T., Cheng D., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J.. ( 2009; ). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. . Cell 137:, 133–145. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032466-0
Loading
/content/journal/jgv/10.1099/vir.0.032466-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2422 - 2427

E2 does not induce constitutive NF-κB activity

Effect of Tax1BP1 silencing on E2-dependent transcription [Single PDF file](138 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error