1887

Abstract

Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock‐down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2′,5′-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that -transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032367-0
2011-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2191.html?itemId=/content/journal/jgv/10.1099/vir.0.032367-0&mimeType=html&fmt=ahah

References

  1. Ablasser A., Bauernfeind F., Hartmann G., Latz E., Fitzgerald K. A., Hornung V. 2009; RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10:1065–1072 [View Article][PubMed]
    [Google Scholar]
  2. Alff P. J., Gavrilovskaya I. N., Gorbunova E., Endriss K., Chong Y., Geimonen E., Sen N., Reich N. C., Mackow E. R. 2006; The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J Virol 80:9676–9686 [View Article][PubMed]
    [Google Scholar]
  3. Baum A., Sachidanandam R., García-Sastre A. 2010; Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107:16303–16308 [View Article][PubMed]
    [Google Scholar]
  4. Binder M., Kochs G., Bartenschlager R., Lohmann V. 2007; Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology 46:1365–1374 [View Article][PubMed]
    [Google Scholar]
  5. Blight K. J., McKeating J. A., Rice C. M. 2002; Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014 [View Article][PubMed]
    [Google Scholar]
  6. Bonin M., Oberstrass J., Lukacs N., Ewert K., Oesterschulze E., Kassing R., Nellen W. 2000; Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy. RNA 6:563–570 [View Article][PubMed]
    [Google Scholar]
  7. Chakrabarti A., Jha B. K., Silverman R. H. 2011; New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 31:49–57 [View Article][PubMed]
    [Google Scholar]
  8. Chang H. W., Jacobs B. L. 1993; Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194:537–547 [View Article][PubMed]
    [Google Scholar]
  9. Chiu Y. H., Macmillan J. B., Chen Z. J. 2009; RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–591 [View Article][PubMed]
    [Google Scholar]
  10. Choi Y., Kwon Y. C., Kim S. I., Park J. M., Lee K. H., Ahn B. Y. 2008; A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 381:178–183 [View Article][PubMed]
    [Google Scholar]
  11. Cui S., Eisenächer K., Kirchhofer A., Brzózka K., Lammens A., Lammens K., Fujita T., Conzelmann K. K., Krug A., Hopfner K. P. 2008; The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29:169–179 [View Article][PubMed]
    [Google Scholar]
  12. Dauber B., Heins G., Wolff T. 2004; The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 78:1865–1872 [View Article][PubMed]
    [Google Scholar]
  13. Eisenächer K., Steinberg C., Reindl W., Krug A. 2008; The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity. Immunobiology 212:701–714 [View Article][PubMed]
    [Google Scholar]
  14. Fujita T. 2009; A nonself RNA pattern: tri-p to panhandle. Immunity 31:4–5 [View Article][PubMed]
    [Google Scholar]
  15. Garcin D., Lezzi M., Dobbs M., Elliott R. M., Schmaljohn C., Kang C. Y., Kolakofsky D. 1995; The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69:5754–5762[PubMed]
    [Google Scholar]
  16. Gavrilovskaya I. N., Shepley M., Shaw R., Ginsberg M. H., Mackow E. R. 1998; β3 integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95:7074–7079 [View Article][PubMed]
    [Google Scholar]
  17. Gavrilovskaya I. N., Brown E. J., Ginsberg M. H., Mackow E. R. 1999; Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by β3 integrins. J Virol 73:3951–3959[PubMed]
    [Google Scholar]
  18. Gilliet M., Cao W., Liu Y. J. 2008; Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606 [View Article][PubMed]
    [Google Scholar]
  19. Habjan M., Andersson I., Klingström J., Schümann M., Martin A., Zimmermann P., Wagner V., Pichlmair A., Schneider U. et al. 2008; Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 3:e2032 [View Article][PubMed]
    [Google Scholar]
  20. Handke W., Oelschlegel R., Franke R., Krüger D. H., Rang A. 2009; Hantaan virus triggers TLR3-dependent innate immune responses. J Immunol 182:2849–2858 [View Article][PubMed]
    [Google Scholar]
  21. Hartmann R., Norby P. L., Martensen P. M., Jorgensen P., James M. C., Jacobsen C., Moestrup S. K., Clemens M. J., Justesen J. 1998; Activation of 2′-5′ oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers. J Biol Chem 273:3236–3246 [View Article][PubMed]
    [Google Scholar]
  22. Heider H., Ziaja B., Priemer C., Lundkvist A., Neyts J., Krüger D. H., Ulrich R. 2001; A chemiluminescence detection method of hantaviral antigens in neutralisation assays and inhibitor studies. J Virol Methods 96:17–23 [View Article][PubMed]
    [Google Scholar]
  23. Hovanessian A. G., Wood J., Meurs E., Montagnier L. 1979; Increased nuclease activity in cells treated with pppA2’p5’A2’p5′ A. Proc Natl Acad Sci U S A 76:3261–3265 [View Article][PubMed]
    [Google Scholar]
  24. Jiang H., Wang P. Z., Zhang Y., Xu Z., Sun L., Wang L. M., Huang C. X., Lian J. Q., Jia Z. S. et al. 2008; Hantaan virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon, interleukin-6 and tumor necrosis factor-alpha. Virology 380:52–59 [View Article][PubMed]
    [Google Scholar]
  25. Jin H., Elliott R. M. 1993; Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J Gen Virol 74:2293–2297 [View Article][PubMed]
    [Google Scholar]
  26. Jonsson C. B., Schmaljohn C. S. 2001; Replication of hantaviruses. Curr Top Microbiol Immunol 256:15–32[PubMed]
    [Google Scholar]
  27. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T. et al. 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 [View Article][PubMed]
    [Google Scholar]
  28. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T. S., Fujita T., Akira S. 2008; Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610 [View Article][PubMed]
    [Google Scholar]
  29. Kerr I. M., Brown R. E. 1978; pppA2’p5’A2’p5’A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 75:256–260 [View Article][PubMed]
    [Google Scholar]
  30. Kraus A. A., Raftery M. J., Giese T., Ulrich R., Zawatzky R., Hippenstiel S., Suttorp N., Krüger D. H., Schönrich G. 2004; Differential antiviral response of endothelial cells after infection with pathogenic and nonpathogenic hantaviruses. J Virol 78:6143–6150 [View Article][PubMed]
    [Google Scholar]
  31. Krautkrämer E., Zeier M. 2008; Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J Virol 82:4257–4264 [View Article][PubMed]
    [Google Scholar]
  32. Krüger D. H., Ulrich R., Lundkvist A A. 2001; Hantavirus infections and their prevention. Microbes Infect 3:1129–1144 [View Article][PubMed]
    [Google Scholar]
  33. Lee H. W., Cho H. J. 1981; Electron microscope appearance of Hantaan virus, the causative agent of Korean haemorrhagic fever. Lancet 1:1070–1072 [View Article][PubMed]
    [Google Scholar]
  34. Levine J. R., Prescott J., Brown K. S., Best S. M., Ebihara H., Feldmann H. 2010; Antagonism of type I interferon responses by new world hantaviruses. J Virol 84:11790–11801 [View Article][PubMed]
    [Google Scholar]
  35. Loo Y. M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M. A., García-Sastre A. et al. 2008; Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345 [View Article][PubMed]
    [Google Scholar]
  36. Lu C., Ranjith-Kumar C. T., Hao L., Kao C. C., Li P. 2011; Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res 39:1565–1575 [View Article][PubMed]
    [Google Scholar]
  37. Ludwig B., Kraus F. B., Allwinn R., Doerr H. W., Preiser W. 2003; Viral zoonoses – a threat under control?. Intervirology 46:71–78 [View Article][PubMed]
    [Google Scholar]
  38. Lütteke N., Raftery M. J., Lalwani P., Lee M.-H., Giese T., Voigt S., Bannert N., Schulze H., Krüger D. H., Schönrich G. 2010; Switch to high-level virus replication and HLA class I upregulation in differentiating megakaryocytic cells after infection with pathogenic hantavirus. Virology 405:70–80 [View Article][PubMed]
    [Google Scholar]
  39. Malathi K., Dong B., Gale M. Jr, Silverman R. H. 2007; Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816–819 [View Article][PubMed]
    [Google Scholar]
  40. Malathi K., Saito T., Crochet N., Barton D. J., Gale M. Jr, Silverman R. H. 2010; RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16:2108–2119 [View Article][PubMed]
    [Google Scholar]
  41. Marcus P. I., Sekellick M. J. 1977; Defective interfering particles with covalently linked [±] RNA induce interferon. Nature 266:815–819 Medline [View Article][PubMed]
    [Google Scholar]
  42. Minks M. A., West D. K., Benvin S., Baglioni C. 1979; Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem 254:10180–10183[PubMed]
    [Google Scholar]
  43. Mir M. A., Panganiban A. T. 2004; Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle. J Virol 78:8281–8288 [View Article][PubMed]
    [Google Scholar]
  44. Mir M. A., Panganiban A. T. 2005; The hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon RNA binding. J Virol 79:1824–1835 [View Article][PubMed]
    [Google Scholar]
  45. Mir M. A., Panganiban A. T. 2010; The triplet repeats of the Sin Nombre hantavirus 5′ untranslated region are sufficient in cis for nucleocapsid-mediated translation initiation. J Virol 84:8937–8944 [View Article][PubMed]
    [Google Scholar]
  46. Mir M. A., Brown B., Hjelle B., Duran W. A., Panganiban A. T. 2006; Hantavirus N protein exhibits genus-specific recognition of the viral RNA panhandle. J Virol 80:11283–11292 [View Article][PubMed]
    [Google Scholar]
  47. Muranyi W., Bahr U., Zeier M., van der Woude F. J. 2005; Hantavirus infection. J Am Soc Nephrol 16:3669–3679 [View Article][PubMed]
    [Google Scholar]
  48. Nam J. H., Hwang K. A., Yu C. H., Kang T. H., Shin J. Y., Choi W. Y., Kim I. B., Joo Y. R., Cho H. W., Park K. Y. 2003; Expression of interferon inducible genes following Hantaan virus infection as a mechanism of resistance in A549 cells. Virus Genes 26:31–38 [View Article][PubMed]
    [Google Scholar]
  49. Ontiveros S. J., Li Q., Jonsson C. B. 2010; Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein. Virology 401:165–178 [View Article][PubMed]
    [Google Scholar]
  50. Prescott J., Ye C., Sen G., Hjelle B. 2005; Induction of innate immune response genes by Sin Nombre hantavirus does not require viral replication. J Virol 79:15007–15015 [View Article][PubMed]
    [Google Scholar]
  51. Prescott J. B., Hall P. R., Bondu-Hawkins V. S., Ye C., Hjelle B. 2007; Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry. J Immunol 179:1796–1802[PubMed] [CrossRef]
    [Google Scholar]
  52. Quinkert D., Bartenschlager R., Lohmann V. 2005; Quantitative analysis of the hepatitis C virus replication complex. J Virol 79:13594–13605 [View Article][PubMed]
    [Google Scholar]
  53. Roberts W. K., Hovanessian A., Brown R. E., Clemens M. J., Kerr I. M. 1976; Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477–480 [View Article][PubMed]
    [Google Scholar]
  54. Saito T., Hirai R., Loo Y. M., Owen D., Johnson C. L., Sinha S. C., Akira S., Fujita T., Gale M. Jr 2007; Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104:582–587 [View Article][PubMed]
    [Google Scholar]
  55. Schlee M., Roth A., Hornung V., Hagmann C. A., Wimmenauer V., Barchet W., Coch C., Janke M., Mihailovic A. et al. 2009; Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34 [View Article][PubMed]
    [Google Scholar]
  56. Schmaljohn C., Hjelle B. 1997; Hantaviruses: a global disease problem. Emerg Infect Dis 3:95–104 [View Article][PubMed]
    [Google Scholar]
  57. Schmaljohn C. S., Nichol S. T. 2007; Bunyaviridae . In Fields Virology, 5th edn. pp. 1741–1789 Edited by Knipe D. M, Howley P. M. Philadelphia: Lippi0ncott Williams & Wilkins;
    [Google Scholar]
  58. Schmidt A., Schwerd T., Hamm W., Hellmuth J. C., Cui S., Wenzel M., Hoffmann F. S., Michallet M. C., Besch R. et al. 2009; 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106:12067–12072 [View Article][PubMed]
    [Google Scholar]
  59. Schönrich G., Rang A., Lütteke N., Raftery M. J., Charbonnel N., Ulrich R. G. 2008; Hantavirus-induced immunity in rodent reservoirs and humans. Immunol Rev 225:163–189 [View Article][PubMed]
    [Google Scholar]
  60. Stoltz M., Ahlm C., Lundkvist A., Klingström J. 2007; Lambda interferon (IFN-λ) in serum is decreased in hantavirus-infected patients, and in vitro-established infection is insensitive to treatment with all IFNs and inhibits IFN-γ-induced nitric oxide production. J Virol 81:8685–8691 [View Article][PubMed]
    [Google Scholar]
  61. Sumpter R. Jr, Loo Y. M., Foy E., Li K., Yoneyama M., Fujita T., Lemon S. M., Gale M. Jr 2005; Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699 [View Article][PubMed]
    [Google Scholar]
  62. Takahasi K., Yoneyama M., Nishihori T., Hirai R., Kumeta H., Narita R., Gale M. Jr, Inagaki F., Fujita T. 2008; Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428–440 [View Article][PubMed]
    [Google Scholar]
  63. Takeuchi O., Akira S. 2010; Pattern recognition receptors and inflammation. Cell 140:805–820 [View Article][PubMed]
    [Google Scholar]
  64. Taylor S. L., Frias-Staheli N., García-Sastre A., Schmaljohn C. S. 2009; Hantaan virus nucleocapsid protein binds to importin α proteins and inhibits tumor necrosis factor α-induced activation of nuclear factor kappa B. J Virol 83:1271–1279 [View Article][PubMed]
    [Google Scholar]
  65. Ulrich R., Hjelle B., Pitra C., Krüger D. H. 2002; Emerging viruses: the case ‘hantavirus’. Intervirology 45:318–327 [View Article][PubMed]
    [Google Scholar]
  66. Valentine R., Smith G. L. 2010; Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol 91:2221–2229 [View Article][PubMed]
    [Google Scholar]
  67. Wang H., Vaheri A., Weber F., Plyusnin A. 2011; Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5′ termini of their genomic RNAs are monophosphorylated. J Gen Virol 92:1199–1204 [View Article][PubMed]
    [Google Scholar]
  68. Watson J. C., Chang H. W., Jacobs B. L. 1991; Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology 185:206–216 [View Article][PubMed]
    [Google Scholar]
  69. Wolff T., Zielecki F., Abt M., Voss D., Semmler I., Matthaei M. 2008; Sabotage of antiviral signaling and effectors by influenza viruses. Biol Chem 389:1299–1305 [View Article][PubMed]
    [Google Scholar]
  70. Yoneyama M., Suhara W., Fukuhara Y., Sato M., Ozato K., Fujita T. 1996; Autocrine amplification of type I interferon gene expression mediated by interferon stimulated gene factor 3 (ISGF3). J Biochem 120:160–169[PubMed] [CrossRef]
    [Google Scholar]
  71. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. 2004; The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737 [View Article][PubMed]
    [Google Scholar]
  72. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y. M., Gale M. Jr et al. 2005; Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032367-0
Loading
/content/journal/jgv/10.1099/vir.0.032367-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error