1887

Abstract

Small ruminant lentiviruses (SRLVs) represent a group of viruses infecting sheep and goats worldwide. Despite the high heterogeneity of genotype A strains, which cluster into as many as ten subtypes, genotype B was believed to be less complex and has, so far, been subdivided into only two subtypes. Here, we describe two novel full-length proviral sequences isolated from Sarda sheep in two Italian regions. Genome sequence as well as the main linear epitopes clearly placed this cluster into genotype B. However, owing to long-standing segregation of this sheep breed, the genetic distances that are clearly >15 % with respect to B1 and B2 subtypes suggest the designation of a novel subtype, B3. Moreover the close relationship with a sequence obtained from a Turkish sheep adds new evidence to historical data that suggest an anthropochorous dissemination of hosts (small ruminants) and their pathogens (SRLV) during the colonization of the Mediterranean from the Middle East.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032334-0
2011-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1923.html?itemId=/content/journal/jgv/10.1099/vir.0.032334-0&mimeType=html&fmt=ahah

References

  1. Carrozza M. L., Mazzei M., Lacerenza D., Del Chiaro L., Giammarioli M., Marini C., Rutili D., Rosati S., Tolari F.. ( 2009;). Seroconversion against SU5 derived synthetic peptides in sheep experimentally infected with different SRLV genotypes. . Vet Microbiol 137:, 369–374. [CrossRef].[PubMed]
    [Google Scholar]
  2. Eltahir Y. M., Dovas C. I., Papanastassopoulou M., Koumbati M., Giadinis N., Verghese-Nikolakaki S., Koptopoulos G.. ( 2006;). Development of a semi-nested PCR using degenerate primers for the generic detection of small ruminant lentivirus proviral DNA. . J Virol Methods 135:, 240–246. [CrossRef].[PubMed]
    [Google Scholar]
  3. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E.. ( 1989;). Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. . Mol Cell Biol 9:, 2728–2733.[PubMed]
    [Google Scholar]
  4. Germain K., Valas S.. ( 2006;). Distribution and heterogeneity of small ruminant lentivirus envelope subtypes in naturally infected French sheep. . Virus Res 120:, 156–162. [CrossRef].[PubMed]
    [Google Scholar]
  5. Glaria I., Reina R., Crespo H., de Andrés X., Ramírez H., Biescas E., Pérez M. M., Badiola J., Luján L., Amorena B.. ( 2009;). Phylogenetic analysis of SRLV sequences from an arthritic sheep outbreak demonstrates the introduction of CAEV-like viruses among Spanish sheep. . Vet Microbiol 138:, 156–162. [CrossRef].[PubMed]
    [Google Scholar]
  6. Grego E., Profiti M., Giammarioli M., Giannino L., Rutili D., Woodall C., Rosati S.. ( 2002;). Genetic heterogeneity of small ruminant lentiviruses involves immunodominant epitope of capsid antigen and affects sensitivity of single-strain-based immunoassay. . Clin Diagn Lab Immunol 9:, 828–832.[PubMed]
    [Google Scholar]
  7. Grego E., Bertolotti L., Carrozza M. L., Profiti M., Mazzei M., Tolari F., Rosati S.. ( 2005;). Genetic and antigenic characterization of the matrix protein of two genetically distinct ovine lentiviruses. . Vet Microbiol 106:, 179–185. [CrossRef].[PubMed]
    [Google Scholar]
  8. Grego E., Bertolotti L., Quasso A., Profiti M., Lacerenza D., Muz D., Rosati S.. ( 2007;). Genetic characterization of small ruminant lentivirus in Italian mixed flocks: evidence for a novel genotype circulating in a local goat population. . J Gen Virol 88:, 3423–3427. [CrossRef].[PubMed]
    [Google Scholar]
  9. Hess J. L., Clements J. E., Narayan O.. ( 1985;). cis- and trans-acting transcriptional regulation of visna virus. . Science 229:, 482–485. [CrossRef].[PubMed]
    [Google Scholar]
  10. Hötzel I., Cheevers W. P.. ( 2001;). Host range of small-ruminant lentivirus cytopathic variants determined with a selectable caprine arthritis- encephalitis virus pseudotype system. . J Virol 75:, 7384–7391. [CrossRef].[PubMed]
    [Google Scholar]
  11. Hötzel I., Cheevers W. P.. ( 2003;). Caprine arthritis-encephalitis virus envelope surface glycoprotein regions interacting with the transmembrane glycoprotein: structural and functional parallels with human immunodeficiency virus type 1 gp120. . J Virol 77:, 11578–11587. [CrossRef].[PubMed]
    [Google Scholar]
  12. Juganaru M., Reina R., Grego E., Profiti M., Rosati S.. ( 2010;). LTR promoter activity of SRLV genotype E, strain Roccaverano. . Vet Res Commun 34: Suppl. 1S47–S51. [CrossRef].[PubMed]
    [Google Scholar]
  13. Juganaru M., Reina R., Bertolotti L., Stella M. C., Profiti M., Armentano M., Bollo E., Amorena B., Rosati S.. ( 2011;). In vitro properties of small ruminant lentivirus genotype E. . Virology 410:, 88–95. [CrossRef].[PubMed]
    [Google Scholar]
  14. Leroux C., Cruz J. C., Mornex J. F.. ( 2010;). SRLVs: a genetic continuum of lentiviral species in sheep and goats with cumulative evidence of cross species transmission. . Curr HIV Res 8:, 94–100. [CrossRef].[PubMed]
    [Google Scholar]
  15. Masseti M.. ( 2009;). The wild goats Capra aegagrus Erxleben, 1777 of the Mediterranean Sea and the Eastern Atlantic Ocean islands. . Mammal Rev 39:, 141–157. [CrossRef]
    [Google Scholar]
  16. Mermod N., Williams T. J., Tjian R.. ( 1988;). Enhancer binding factors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. . Nature 332:, 557–561. [CrossRef].[PubMed]
    [Google Scholar]
  17. Murphy B., Jasmer D. P., White S. N., Knowles D.. ( 2007;). Localization of a TNF-activated transcription site and interactions with the gamma activated site within the CAEV U3 70 base pair repeat. . Virology 364:, 196–207. [CrossRef].[PubMed]
    [Google Scholar]
  18. Murphy B., McElliott V., Vapniarsky N., Oliver A., Rowe J.. ( 2010;). Tissue tropism and promoter sequence variation in caprine arthritis encephalitis virus infected goats. . Virus Res 151:, 177–184. [CrossRef].[PubMed]
    [Google Scholar]
  19. Naderi S., Rezaei H. R., Taberlet P., Zundel S., Rafat S. A., Naghash H. R., el-Barody M. A., Ertugrul O., Pompanon F..Econogene Consortium ( 2007;). Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. . PLoS ONE 2:, e1012. [CrossRef].[PubMed]
    [Google Scholar]
  20. Nei M.. ( 1987;). Molecular Evolutionary Genetics. New York:: Columbia University Press;.
    [Google Scholar]
  21. Oskarsson T., Hreggvidsdóttir H. S., Agnarsdóttir G., Matthíasdóttir S., Ogmundsdóttir M. H., Jónsson S. R., Georgsson G., Ingvarsson S., Andrésson O. S., Andrésdóttir V.. ( 2007;). Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. . J Virol 81:, 4052–4057. [CrossRef].[PubMed]
    [Google Scholar]
  22. Pisoni G., Quasso A., Moroni P.. ( 2005;). Phylogenetic analysis of small-ruminant lentivirus subtype B1 in mixed flocks: evidence for natural transmission from goats to sheep. . Virology 339:, 147–152. [CrossRef].[PubMed]
    [Google Scholar]
  23. Pisoni G., Bertoni G., Manarolla G., Vogt H. R., Scaccabarozzi L., Locatelli C., Moroni P.. ( 2010;). Genetic analysis of small ruminant lentiviruses following lactogenic transmission. . Virology 407:, 91–99. [CrossRef].[PubMed]
    [Google Scholar]
  24. Posada D., Buckley T. R.. ( 2004;). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and bayesian approaches over likelihood ratio tests. . Syst Biol 53:, 793–808. [CrossRef].[PubMed]
    [Google Scholar]
  25. Reina R., Bertolotti L., Dei Giudici S., Puggioni G., Ponti N., Profiti M., Patta C., Rosati S.. ( 2010;). Small ruminant lentivirus genotype E is widespread in Sarda goat. . Vet Microbiol 144:, 24–31. [CrossRef].[PubMed]
    [Google Scholar]
  26. Reina R., Juganaru M. M., Profiti M., Cascio P., Cerruti F., Bertolotti L., De Meneghi D., Amorena B., Rosati S.. ( 2011;). Immunological parameters in goats experimentally infected with SRLV genotype E, strain Roccaverano. . Vet Immunol Immunopathol 139:, 237–244. [CrossRef].[PubMed]
    [Google Scholar]
  27. Robertson D. L., Anderson J., Bradac J. A., Carr J. K., Foley B., Funkhouser R. K., Gao F., Hahn B. H., Kalish M.. & other authors ( 1999;). HIV-1 nomenclature proposal: a reference guide to HIV-1 classification.. The Human Retroviruses and AIDS 1999 Compendium Los Alamos National Laboratory, Los Alamos, 492–505.
    [Google Scholar]
  28. Ronquist F., Huelsenbeck J. P.. ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef].[PubMed]
    [Google Scholar]
  29. Saltarelli M., Querat G., Konings D. A., Vigne R., Clements J. E.. ( 1990;). Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. . Virology 179:, 347–364. [CrossRef].[PubMed]
    [Google Scholar]
  30. Valas S., Benoit C., Guionaud C., Perrin G., Mamoun R. Z.. ( 1997;). North American and French caprine arthritis-encephalitis viruses emerge from ovine maedi-visna viruses. . Virology 237:, 307–318. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032334-0
Loading
/content/journal/jgv/10.1099/vir.0.032334-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error