1887

Abstract

Glycoprotein B (gB) is a conserved, essential component of gammaherpes virions and so potentially vulnerable to neutralization. However, few good gB-specific neutralizing antibodies have been identified. Here, we show that murid herpesvirus 4 is strongly neutralized by mAbs that recognize an epitope close to one of the gB fusion loops. Antibody binding did not stop gB interacting with its cellular ligands or initiating its fusion-associated conformation change, but did stop gB resolving stably to its post-fusion form, and so blocked membrane fusion to leave virions stranded in late endosomes. The conservation of gB makes this mechanism a possible general route to gammaherpesvirus neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032177-0
2011-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2020.html?itemId=/content/journal/jgv/10.1099/vir.0.032177-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H.. ( 2000;). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. . J Virol 74:, 6964–6974. [CrossRef].[PubMed]
    [Google Scholar]
  2. Akula S. M., Pramod N. P., Wang F. Z., Chandran B.. ( 2002;). Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. . Cell 108:, 407–419. [CrossRef].[PubMed]
    [Google Scholar]
  3. Backovic M., Jardetzky T. S., Longnecker R.. ( 2007;). Hydrophobic residues that form putative fusion loops of Epstein–Barr virus glycoprotein B are critical for fusion activity. . J Virol 81:, 9596–9600. [CrossRef].[PubMed]
    [Google Scholar]
  4. Backovic M., Longnecker R., Jardetzky T. S.. ( 2009;). Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B. . Proc Natl Acad Sci U S A 106:, 2880–2885. [CrossRef].[PubMed]
    [Google Scholar]
  5. Baigent S. J., Smith L. P., Nair V. K., Currie R. J.. ( 2006;). Vaccinal control of Marek’s disease: current challenges, and future strategies to maximize protection. . Vet Immunol Immunopathol 112:, 78–86. [CrossRef].[PubMed]
    [Google Scholar]
  6. Balasubramanian K., Schroit A. J.. ( 2003;). Aminophospholipid asymmetry: a matter of life and death. . Annu Rev Physiol 65:, 701–734. [CrossRef].[PubMed]
    [Google Scholar]
  7. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E. et al. ( 1986;). Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. . EMBO J 5:, 3057–3063.[PubMed]
    [Google Scholar]
  8. de Lima B. D., May J. S., Stevenson P. G.. ( 2004;). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. . J Virol 78:, 5103–5112. [CrossRef].[PubMed]
    [Google Scholar]
  9. Dollery S. J., Delboy M. G., Nicola A. V.. ( 2010;). Low pH-induced conformational change in herpes simplex virus glycoprotein B. . J Virol 84:, 3759–3766. [CrossRef].[PubMed]
    [Google Scholar]
  10. Efstathiou S., Ho Y. M., Hall S., Styles C. J., Scott S. D., Gompels U. A.. ( 1990;). Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein–Barr virus and herpesvirus saimiri. . J Gen Virol 71:, 1365–1372. [CrossRef].[PubMed]
    [Google Scholar]
  11. Gaspar M., Gill M. B., Lösing J. B., May J. S., Stevenson P. G.. ( 2008;). Multiple functions for ORF75c in murid herpesvirus-4 infection. . PLoS ONE 3:, e2781. [CrossRef].[PubMed]
    [Google Scholar]
  12. Gill M. B., Gillet L., Colaco S., May J. S., de Lima B. D., Stevenson P. G.. ( 2006;). Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. . J Gen Virol 87:, 1465–1475. [CrossRef].[PubMed]
    [Google Scholar]
  13. Gillet L., Stevenson P. G.. ( 2007a;). Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. . EMBO J 26:, 5131–5142. [CrossRef].[PubMed]
    [Google Scholar]
  14. Gillet L., Stevenson P. G.. ( 2007b; ). Evidence for a multiprotein gamma-2 herpesvirus entry complex. . J Virol 81:, 13082–13091. [CrossRef].[PubMed]
    [Google Scholar]
  15. Gillet L., Gill M. B., Colaco S., Smith C. M., Stevenson P. G.. ( 2006;). Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. . J Gen Virol 87:, 3515–3527. [CrossRef].[PubMed]
    [Google Scholar]
  16. Gillet L., May J. S., Stevenson P. G.. ( 2007a;). Post-exposure vaccination improves gammaherpesvirus neutralization. . PLoS ONE 2:, e899. [CrossRef].[PubMed]
    [Google Scholar]
  17. Gillet L., Adler H., Stevenson P. G.. ( 2007b; ). Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. . PLoS ONE 2:, e347. [CrossRef].[PubMed]
    [Google Scholar]
  18. Gillet L., May J. S., Colaco S., Stevenson P. G.. ( 2007c; ). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. . J Virol 81:, 280–291. [CrossRef].[PubMed]
    [Google Scholar]
  19. Gillet L., Colaco S., Stevenson P. G.. ( 2008a;). Glycoprotein B switches conformation during murid herpesvirus 4 entry. . J Gen Virol 89:, 1352–1363. [CrossRef][PubMed]
    [Google Scholar]
  20. Gillet L., Colaco S., Stevenson P. G.. ( 2008b; ). The murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. . PLoS ONE 3:, e2811. [CrossRef].[PubMed]
    [Google Scholar]
  21. Gillet L., May J. S., Stevenson P. G.. ( 2009a;). In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. . J Gen Virol 90:, 602–613. [CrossRef].[PubMed]
    [Google Scholar]
  22. Gillet L., Alenquer M., Glauser D. L., Colaco S., May J. S., Stevenson P. G.. ( 2009b; ). Glycoprotein L sets the neutralization profile of murid herpesvirus 4. . J Gen Virol 90:, 1202–1214. [CrossRef].[PubMed]
    [Google Scholar]
  23. Gorman S., Harvey N. L., Moro D., Lloyd M. L., Voigt V., Smith L. M., Lawson M. A., Shellam G. R.. ( 2006;). Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. . J Gen Virol 87:, 1123–1132. [CrossRef].[PubMed]
    [Google Scholar]
  24. Greenspan N. S., Cooper L. J.. ( 1995;). Complementarity, specificity and the nature of epitopes and paratopes in multivalent interactions. . Immunol Today 16:, 226–230. [CrossRef].[PubMed]
    [Google Scholar]
  25. Hannah B. P., Cairns T. M., Bender F. C., Whitbeck J. C., Lou H., Eisenberg R. J., Cohen G. H.. ( 2009;). Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. . J Virol 83:, 6825–6836. [CrossRef].[PubMed]
    [Google Scholar]
  26. Heldwein E. E., Lou H., Bender F. C., Cohen G. H., Eisenberg R. J., Harrison S. C.. ( 2006;). Crystal structure of glycoprotein B from herpes simplex virus 1. . Science 313:, 217–220. [CrossRef].[PubMed]
    [Google Scholar]
  27. Highlander S. L., Cai W. H., Person S., Levine M., Glorioso J. C.. ( 1988;). Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. . J Virol 62:, 1881–1888.[PubMed]
    [Google Scholar]
  28. Hutt-Fletcher L. M.. ( 2007;). Epstein–Barr virus entry. . J Virol 81:, 7825–7832. [CrossRef].[PubMed]
    [Google Scholar]
  29. Klein R. J.. ( 1989;). Reinfections and site-specific immunity in herpes simplex virus infections. . Vaccine 7:, 380–381. [CrossRef].[PubMed]
    [Google Scholar]
  30. Knossow M., Skehel J. J.. ( 2006;). Variation and infectivity neutralization in influenza. . Immunology 119:, 1–7. [CrossRef].[PubMed]
    [Google Scholar]
  31. Kobayashi T., Gu F., Gruenberg J.. ( 1998;). Lipids, lipid domains and lipid-protein interactions in endocytic membrane traffic. . Semin Cell Dev Biol 9:, 517–526. [CrossRef].[PubMed]
    [Google Scholar]
  32. Lopes F. B., Colaco S., May J. S., Stevenson P. G.. ( 2004;). Characterization of murine gammaherpesvirus 68 glycoprotein B. . J Virol 78:, 13370–13375. [CrossRef].[PubMed]
    [Google Scholar]
  33. Mancini G., Carbonara A. O., Heremans J. F.. ( 1965;). Immunochemical quantitation of antigens by single radial immunodiffusion. . Immunochemistry 2:, 235–254. [CrossRef].[PubMed]
    [Google Scholar]
  34. May J. S., Stevenson P. G.. ( 2010;). Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. . J Gen Virol 91:, 2542–2552. [CrossRef].[PubMed]
    [Google Scholar]
  35. May J. S., Coleman H. M., Smillie B., Efstathiou S., Stevenson P. G.. ( 2004;). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. . J Gen Virol 85:, 137–146. [CrossRef].[PubMed]
    [Google Scholar]
  36. May J. S., Colaco S., Stevenson P. G.. ( 2005;). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. . J Virol 79:, 3459–3467. [CrossRef].[PubMed]
    [Google Scholar]
  37. May J. S., Smith C. M., Gill M. B., Stevenson P. G.. ( 2008;). An essential role for the proximal but not the distal cytoplasmic tail of glycoprotein M in murid herpesvirus 4 infection. . PLoS ONE 3:, e2131. [CrossRef].[PubMed]
    [Google Scholar]
  38. Navarro D., Paz P., Tugizov S., Topp K., La Vail J., Pereira L.. ( 1993;). Glycoprotein B of human cytomegalovirus promotes virion penetration into cells, transmission of infection from cell to cell, and fusion of infected cells. . Virology 197:, 143–158. [CrossRef].[PubMed]
    [Google Scholar]
  39. Ohlin M., Sundqvist V. A., Mach M., Wahren B., Borrebaeck C. A.. ( 1993;). Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gB), as determined with human monoclonal antibodies. . J Virol 67:, 703–710.[PubMed]
    [Google Scholar]
  40. Okazaki K., Fujii S., Takada A., Kida H.. ( 2006;). The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. . Virus Res 115:, 105–111. [CrossRef].[PubMed]
    [Google Scholar]
  41. Roche S., Bressanelli S., Rey F. A., Gaudin Y.. ( 2006;). Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. . Science 313:, 187–191. [CrossRef].[PubMed]
    [Google Scholar]
  42. Roche S., Rey F. A., Gaudin Y., Bressanelli S.. ( 2007;). Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. . Science 315:, 843–848. [CrossRef].[PubMed]
    [Google Scholar]
  43. Roche S., Albertini A. A., Lepault J., Bressanelli S., Gaudin Y.. ( 2008;). Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. . Cell Mol Life Sci 65:, 1716–1728. [CrossRef].[PubMed]
    [Google Scholar]
  44. Rosa G. T., Gillet L., Smith C. M., de Lima B. D., Stevenson P. G.. ( 2007;). IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. . PLoS ONE 2:, e560. [CrossRef].[PubMed]
    [Google Scholar]
  45. Roy A., Kucukural A., Zhang Y.. ( 2010;). I-TASSER: a unified platform for automated protein structure and function prediction. . Nat Protoc 5:, 725–738. [CrossRef].[PubMed]
    [Google Scholar]
  46. Smith C. M., Gill M. B., May J. S., Stevenson P. G.. ( 2007;). Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. . PLoS ONE 2:, e1048. [CrossRef].[PubMed]
    [Google Scholar]
  47. Spear P. G., Longnecker R.. ( 2003;). Herpesvirus entry: an update. . J Virol 77:, 10179–10185. [CrossRef].[PubMed]
    [Google Scholar]
  48. Speckner A., Glykofrydes D., Ohlin M., Mach M.. ( 1999;). Antigenic domain 1 of human cytomegalovirus glycoprotein B induces a multitude of different antibodies which, when combined, results in incomplete virus neutralization. . J Gen Virol 80:, 2183–2191.[PubMed]
    [Google Scholar]
  49. Stampfer S. D., Lou H., Cohen G. H., Eisenberg R. J., Heldwein E. E.. ( 2010;). Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1. . J Virol 84:, 12924–12933. [CrossRef].[PubMed]
    [Google Scholar]
  50. Virgin H. W. IV, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H.. ( 1997;). Complete sequence and genomic analysis of murine gammaherpesvirus 68. . J Virol 71:, 5894–5904.[PubMed]
    [Google Scholar]
  51. Zhang Y.. ( 2008;). I-TASSER server for protein 3D structure prediction. . BMC Bioinformatics 9:, 40. [CrossRef].[PubMed]
    [Google Scholar]
  52. Zinkernagel R. M., Hengartner H.. ( 2006;). Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. . Immunol Rev 211:, 310–319. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032177-0
Loading
/content/journal/jgv/10.1099/vir.0.032177-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2020 - 2033

NMuMG cells were left uninfected (nil) or incubated with MuHV-4 [PDF](864 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error