1887

Abstract

Several plus-strand RNA viruses encode proteins containing macrodomains. These domains possess ADP-ribose-1″-phosphatase (ADRP) activity and/or bind poly(ADP-ribose), poly(A) or poly(G). The relevance of these activities in the viral life cycle has not yet been resolved. Here, we report that genetically engineered mutants of severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus 229E (HCoV-229E) expressing ADRP-deficient macrodomains displayed an increased sensitivity to the antiviral effect of alpha interferon compared with their wild-type counterparts. The data suggest that macrodomain-associated ADRP activities may have a role in viral escape from the innate immune responses of the host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031856-0
2011-08-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1899.html?itemId=/content/journal/jgv/10.1099/vir.0.031856-0&mimeType=html&fmt=ahah

References

  1. Bechill J., Chen Z., Brewer J. W., Baker S. C. 2008; Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression. J Virol 82:4492–4501 [CrossRef][PubMed]
    [Google Scholar]
  2. Beitz E. 2000; TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 16:135–139 [CrossRef][PubMed]
    [Google Scholar]
  3. Billecocq A., Spiegel M., Vialat P., Kohl A., Weber F., Bouloy M., Haller O. 2004; NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78:9798–9806 [CrossRef][PubMed]
    [Google Scholar]
  4. Devaraj S. G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C. J., Tseng C. T. et al. 2007; Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282:32208–32221 [CrossRef][PubMed]
    [Google Scholar]
  5. Dijkman R., Jebbink M. F., Wilbrink B., Pyrc K., Zaaijer H. L., Minor P. D., Franklin S., Berkhout B., Thiel V., van der Hoek L. 2006; Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. Virol J 3:106 [CrossRef][PubMed]
    [Google Scholar]
  6. Draker R., Roper R. L., Petric M., Tellier R. 2006; The complete sequence of the bovine torovirus genome. Virus Res 115:56–68 [CrossRef][PubMed]
    [Google Scholar]
  7. Egloff M. P., Malet H., Putics A., Heinonen M., Dutartre H., Frangeul A., Gruez A., Campanacci V., Cambillau C. et al. 2006; Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol 80:8493–8502 [CrossRef][PubMed]
    [Google Scholar]
  8. Eriksson K. K., Cervantes-Barragán L., Ludewig B., Thiel V. 2008; Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1″-phosphatase, a viral function conserved in the alpha-like supergroup. J Virol 82:12325–12334 [CrossRef][PubMed]
    [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Lai M. M. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288:201–205 [CrossRef][PubMed]
    [Google Scholar]
  10. Gorbalenya A. E., Snijder E. J., Spaan W. J. 2004; Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol 78:7863–7866 [CrossRef][PubMed]
    [Google Scholar]
  11. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. 2006; Nidovirales: evolving the largest RNA virus genome. Virus Res 117:17–37 [CrossRef][PubMed]
    [Google Scholar]
  12. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191[PubMed]
    [Google Scholar]
  13. Horisberger M. A., de Staritzky K. 1987; A recombinant human interferon-alpha B/D hybrid with a broad host-range. J Gen Virol 68:945–948 [CrossRef][PubMed]
    [Google Scholar]
  14. Hosking M. P., Lane T. E. 2010; The role of chemokines during viral infection of the CNS. PLoS Pathog 6:e1000937 [CrossRef][PubMed]
    [Google Scholar]
  15. [Google Scholar]
  16. Kuri T., Zhang X., Habjan M., Martínez-Sobrido L., García-Sastre A., Yuan Z., Weber F. 2009; Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J Gen Virol 90:2686–2694 [CrossRef][PubMed]
    [Google Scholar]
  17. Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C. T., Makino S. 2008; Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82:4471–4479 [CrossRef][PubMed]
    [Google Scholar]
  18. Neuman B. W., Joseph J. S., Saikatendu K. S., Serrano P., Chatterjee A., Johnson M. A., Liao L., Klaus J. P., Yates J. R. III et al. 2008; Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82:5279–5294 [CrossRef][PubMed]
    [Google Scholar]
  19. Neuvonen M., Ahola T. 2009; Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385:212–225 [CrossRef][PubMed]
    [Google Scholar]
  20. Overby A. K., Popov V. L., Niedrig M., Weber F. 2010; Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J Virol 84:8470–8483 [CrossRef][PubMed]
    [Google Scholar]
  21. Park E., Griffin D. E. 2009; The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388:305–314 [CrossRef][PubMed]
    [Google Scholar]
  22. Peiris J. S., Guan Y., Yuen K. Y. 2004; Severe acute respiratory syndrome. Nat Med 10:Suppl.S88–S97 [CrossRef][PubMed]
    [Google Scholar]
  23. Piotrowski Y., Hansen G., Boomaars-van der Zanden A. L., Snijder E. J., Gorbalenya A. E., Hilgenfeld R. 2009; Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property. Protein Sci 18:6–16[PubMed]
    [Google Scholar]
  24. Putics A., Filipowicz W., Hall J., Gorbalenya A. E., Ziebuhr J. 2005; ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79:12721–12731 [CrossRef][PubMed]
    [Google Scholar]
  25. Putics A., Gorbalenya A. E., Ziebuhr J. 2006; Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J Gen Virol 87:651–656 [CrossRef][PubMed]
    [Google Scholar]
  26. Pyrc K., Berkhout B., van der Hoek L. 2007; The novel human coronaviruses NL63 and HKU1. J Virol 81:3051–3057 [CrossRef][PubMed]
    [Google Scholar]
  27. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [CrossRef][PubMed]
    [Google Scholar]
  28. Saikatendu K. S., Joseph J. S., Subramanian V., Clayton T., Griffith M., Moy K., Velasquez J., Neuman B. W., Buchmeier M. J. et al. 2005; Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1″-phosphate dephosphorylation by a conserved domain of nsP3. Structure 13:1665–1675 [CrossRef][PubMed]
    [Google Scholar]
  29. Schütze H., Ulferts R., Schelle B., Bayer S., Granzow H., Hoffmann B., Mettenleiter T. C., Ziebuhr J. 2006; Characterization of White bream virus reveals a novel genetic cluster of nidoviruses. J Virol 80:11598–11609 [CrossRef][PubMed]
    [Google Scholar]
  30. Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L., Guan Y., Rozanov M., Spaan W. J., Gorbalenya A. E. 2003; Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004 [CrossRef][PubMed]
    [Google Scholar]
  31. Spiegel M., Pichlmair A., Mühlberger E., Haller O., Weber F. 2004; The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 30:211–213[PubMed] [CrossRef]
    [Google Scholar]
  32. Spiegel M., Pichlmair A., Martínez-Sobrido L., Cros J., García-Sastre A., Haller O., Weber F. 2005; Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79:2079–2086 [CrossRef][PubMed]
    [Google Scholar]
  33. Tan J., Vonrhein C., Smart O. S., Bricogne G., Bollati M., Kusov Y., Hansen G., Mesters J. R., Schmidt C. L., Hilgenfeld R. 2009; The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog 5:e1000428 [CrossRef][PubMed]
    [Google Scholar]
  34. Thiel V., Weber F. 2008; Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19:121–132 [CrossRef][PubMed]
    [Google Scholar]
  35. Thiel V., Herold J., Schelle B., Siddell S. G. 2001; Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281[PubMed]
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  37. Till S., Ladurner A. G. 2009; Sensing NAD metabolites through macro domains. Front Biosci 14:3246–3258 [CrossRef][PubMed]
    [Google Scholar]
  38. Wathelet M. G., Orr M., Frieman M. B., Baric R. S. 2007; Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81:11620–11633 [CrossRef][PubMed]
    [Google Scholar]
  39. Weber F., Haller O. 2007; Viral suppression of the interferon system. Biochimie 89:836–842 [CrossRef][PubMed]
    [Google Scholar]
  40. Wevers B. A., van der Hoek L. 2009; Recently discovered human coronaviruses. Clin Lab Med 29:715–724 [CrossRef][PubMed]
    [Google Scholar]
  41. Zeng F. Y., Chan C. W., Chan M. N., Chen J. D., Chow K. Y., Hon C. C., Hui K. H., Li J., Li V. Y. et al. 2003; The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp Biol Med (Maywood) 228:866–873[PubMed]
    [Google Scholar]
  42. Ziebuhr J. 2008; Coronavirus replicative proteins. In Nidoviruses pp. 65–81 Edited by Perlman S., Gallagher T., Snijder E. J. Washington, DC: ASM press;
    [Google Scholar]
  43. Ziebuhr J., Thiel V., Gorbalenya A. E. 2001; The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276:33220–33232 [CrossRef][PubMed]
    [Google Scholar]
  44. Züst R., Cervantes-Barragán L., Kuri T., Blakqori G., Weber F., Ludewig B., Thiel V. 2007; Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3:e109 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031856-0
Loading
/content/journal/jgv/10.1099/vir.0.031856-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error