Flavivirus-induced antibody cross-reactivity Open Access

Abstract

Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031641-0
2011-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2821.html?itemId=/content/journal/jgv/10.1099/vir.0.031641-0&mimeType=html&fmt=ahah

References

  1. Arroyo J., Miller C., Catalan J., Myers G. A., Ratterree M. S., Trent D. W., Monath T. P. 2004; ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J Virol 78:12497–12507 [View Article][PubMed]
    [Google Scholar]
  2. Autorino G. L., Battisti A., Deubel V., Ferrari G., Forletta R., Giovannini A., Lelli R., Murri S., Scicluna M. T. 2002; West Nile virus epidemic in horses, Tuscany region, Italy. Emerg Infect Dis 8:1372–1378[PubMed] [CrossRef]
    [Google Scholar]
  3. Bakonyi T., Ivanics É., Erdélyi K., Ursu K., Ferenczi E., Weissenböck H., Nowotny N. 2006; Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis 12:618–623[PubMed] [CrossRef]
    [Google Scholar]
  4. Beasley D. W. C., Barrett A. D. T. 2002; Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76:13097–13100 [View Article][PubMed]
    [Google Scholar]
  5. Bosco-Lauth A., Mason G., Bowen R. 2011; Pathogenesis of Japanese encephalitis virus infection in a golden hamster model and evaluation of flavivirus cross-protective immunity. Am J Trop Med Hyg 84:727–732 [View Article][PubMed]
    [Google Scholar]
  6. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westaway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70:37–43 [View Article][PubMed]
    [Google Scholar]
  7. Chung K. M., Thompson B. S., Fremont D. H., Diamond M. S. 2007; Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile virus-infected cells. J Virol 81:9551–9555 [View Article][PubMed]
    [Google Scholar]
  8. Colombage G., Hall R., Pavy M., Lobigs M. 1998; DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250:151–163 [View Article][PubMed]
    [Google Scholar]
  9. de Jong J. C., Smith D. J., Lapedes A. S., Donatelli I., Campitelli L., Barigazzi G., Van Reeth K., Jones T. C., Rimmelzwaan G. F. et al.other authors 2007; Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe. J Virol 81:4315–4322 [View Article][PubMed]
    [Google Scholar]
  10. Diamond M. S., Shrestha B., Marri A., Mahan D., Engle M. 2003a; B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586 [View Article][PubMed]
    [Google Scholar]
  11. Diamond M. S., Sitati E. M., Friend L. D., Higgs S., Shrestha B., Engle M. 2003b; A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198:1853–1862 [View Article][PubMed]
    [Google Scholar]
  12. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E. et al. other authors 2009; Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [View Article][PubMed]
    [Google Scholar]
  13. Gaunt M. W., Sall A. A., de Lamballerie X., Falconar A. K. I., Dzhivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876[PubMed]
    [Google Scholar]
  14. Grard G., Moureau G., Charrel R. N., Lemasson J. J., Gonzalez J. P., Gallian P., Gritsun T. S., Holmes E. C., Gould E. A., de Lamballerie X. 2007; Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361:80–92 [View Article][PubMed]
    [Google Scholar]
  15. Heinz F.-X., Berger R., Tuma W., Kunz C. 1983; A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology 126:525–537 [View Article][PubMed]
    [Google Scholar]
  16. Hirota J., Nishi H., Matsuda H., Tsunemitsu H., Shimiz S. 2010; Cross-reactivity of Japanese encephalitis virus-vaccinated horse sera in serodiagnosis of West Nile virus. J Vet Med Sci 72:369–372 [View Article][PubMed]
    [Google Scholar]
  17. Horton D. L., McElhinney L. M., Marston D. A., Wood J. L. N., Russell C. A., Lewis N., Kuzmin I. V., Fouchier R. A. M., Osterhaus A. D. M. E. et al. other authors 2010; Quantifying antigenic relationships among the lyssaviruses. J Virol 84:11841–11848 [View Article][PubMed]
    [Google Scholar]
  18. Huang S. W., Hsu Y. W., Smith D. J., Kiang D., Tsai H. P., Lin K. H., Wang S. M., Liu C. C., Su I. J., Wang J. R. 2009; Reemergence of enterovirus 71 in 2008 in Taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 47:3653–3662 [View Article][PubMed]
    [Google Scholar]
  19. Hubálek Z., Halouzka J., Juricová Z. 1999; West Nile fever in Czechland. Emerg Infect Dis 5:594–595 [View Article][PubMed]
    [Google Scholar]
  20. Kimura-Kuroda J., Yasui K. 1986; Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. J Gen Virol 67:2663–2672 [View Article][PubMed]
    [Google Scholar]
  21. Kramer L. D., Styer L. M., Ebel G. D. 2008; A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53:61–81 [View Article][PubMed]
    [Google Scholar]
  22. Krisztalovics K., Ferenczi E., Molnar Z., Csohan A., Ban E., Zoldi V., Kaszas K. 2008; West Nile virus infections in Hungary, August–September 2008. Euro Surveill 13:pii = 19030 Available at: http://www.ncbi.nlm.nih.gov/pubmed/19000572
    [Google Scholar]
  23. Li S. H., Li X. F., Zhao H., Jiang T., Deng Y. Q., Yu X. D., Zhu Q. Y., Qin E. D., Qin C. F. 2011; Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett 138:156–160 [View Article][PubMed]
    [Google Scholar]
  24. Lobigs M., Larena M., Alsharifi M., Lee E., Pavy M. 2009; Live chimeric and inactivated Japanese encephalitis virus vaccines differ in their cross-protective values against Murray Valley encephalitis virus. J Virol 83:2436–2445 [View Article][PubMed]
    [Google Scholar]
  25. Maillard R. A., Jordan M., Beasley D. W. C., Barrett A. D. T., Lee J. C. 2008; Long range communication in the envelope protein domain III and its effect on the resistance of West Nile virus to antibody-mediated neutralization. J Biol Chem 283:613–622 [View Article][PubMed]
    [Google Scholar]
  26. Murgue B., Murri S., Zientara S., Durand B., Durand J.-P., Zeller H. 2001; West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 7:692–696 [View Article][PubMed]
    [Google Scholar]
  27. Nash D., Mostashari F., Fine A., Miller J., O’Leary D., Murray K., Huang A., Rosenberg A., Greenberg A. et al. other authors 2001; The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814 [View Article][PubMed]
    [Google Scholar]
  28. Office Internationale des Epizooties (OIE) 2008 OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 6th edn. Paris, France: Office Internationale des Epizooties;
    [Google Scholar]
  29. Orlinger K. K., Hofmeister Y., Fritz R., Holzer G. W., Falkner F. G., Unger B., Loew-Baselli A., Poellabauer E.-M., Ehrlich H. J. et al. other authors 2011; A tick-borne encephalitis virus vaccine based on the European prototype strain induces broadly reactive cross-neutralizing antibodies in humans. J Infect Dis 203:1556–1564 [View Article][PubMed]
    [Google Scholar]
  30. Papa A., Danis K., Baka A., Bakas A., Dougas G., Lytras T., Theocharopoulos G., Chrysagis D., Vassiliadou E. et al.other authors 2010; Ongoing outbreak of West Nile virus infections in humans in Greece, July–August 2010. Euro Surveill 15:pii = 19644 http://www.ncbi.nlm.nih.gov/pubmed/20807489
    [Google Scholar]
  31. Peiris J. S. M., Porterfield J. S., Roehrig J. T. 1982; Monoclonal antibodies against the flavivirus West Nile. J Gen Virol 58:283–289 [View Article][PubMed]
    [Google Scholar]
  32. Pincus S., Mason P. W., Konishi E., Fonseca B. A., Shope R. E., Rice C. M., Paoletti E. 1992; Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 187:290–297 [View Article][PubMed]
    [Google Scholar]
  33. Porterfield J. S. 1980; Antigenic characteristics and classification of Togaviridae . In The Togaviruses pp. 13–46 Edited by Schlesinger R. W. New York: Academic Press; [CrossRef]
    [Google Scholar]
  34. Rizzo C., Vescio F., Declich S., Finarelli A. C., Macini P., Mattivi A., Rossini G., Piovesan C., Barzon L. et al. other authors 2009; West Nile virus transmission with human` cases in Italy, August–September 2009. Euro Surveill 14:pii = 19353 http://www.eurosurveillance.org/images/dynamic/EE/V14N40/art19353.pdf
    [Google Scholar]
  35. Russell C. A., Jones T. C., Barr I. G., Cox N. J., Garten R. J., Gregory V., Gust I. D., Hampson A. W., Hay A. J. et al. other authors 2008; The global circulation of seasonal influenza A (H3N2) viruses. Science 320:340–346 [View Article][PubMed]
    [Google Scholar]
  36. Schlesinger J. J., Brandriss M. W. 1983; 17D yellow fever virus infection of P388D1 cells mediated by monoclonal antibodies: properties of the macrophage Fc receptor. J Gen Virol 64:1255–1262 [View Article][PubMed]
    [Google Scholar]
  37. Schuller E., Klade C. S., Heinz F. X., Kollaritsch H., Rendi-Wagner P., Jilma B., Tauber E. 2008; Effect of pre-existing anti-tick-borne encephalitis virus immunity on neutralising antibody response to the Vero cell-derived, inactivated Japanese encephalitis virus vaccine candidate IC51. Vaccine 26:6151–6156 [View Article][PubMed]
    [Google Scholar]
  38. Shu P. Y., Chen L. K., Chang S. F., Yueh Y. Y., Chow L., Chien L. J., Chin C., Lin T. H., Huang J. H. 2000; Dengue NS1-specific antibody responses: isotype distribution and serotyping in patients with Dengue fever and Dengue hemorrhagic fever. J Med Virol 62:224–232 [View Article][PubMed]
    [Google Scholar]
  39. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A. 2004; Mapping the antigenic and genetic evolution of influenza virus. Science 305:371–376 [View Article][PubMed]
    [Google Scholar]
  40. Takegami T., Miyamoto H., Nakamura H., Yasui K. 1982; Biological activities of the structural proteins of Japanese encephalitis virus. Acta Virol 26:312–320[PubMed]
    [Google Scholar]
  41. Tesh R. B., Travassos da Rosa A. P. A., Guzman H., Araujo T. P., Xiao S.-Y. 2002; Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251 [View Article][PubMed]
    [Google Scholar]
  42. Thomas S. J., Endy T. P. 2011; Vaccines for the prevention of dengue: development update. Hum Vaccine 7:674–684[PubMed] [CrossRef]
    [Google Scholar]
  43. Vaughan K., Greenbaum J., Blythe M., Peters B., Sette A. 2010; Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology. Viral Immunol 23:259–284 [View Article][PubMed]
    [Google Scholar]
  44. Yamshchikov G., Borisevich V., Kwok C. W., Nistler R., Kohlmeier J., Seregin A., Chaporgina E., Benedict S., Yamshchikov V. 2005; The suitability of yellow fever and Japanese encephalitis vaccines for immunization against West Nile virus. Vaccine 23:4785–4792 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031641-0
Loading
/content/journal/jgv/10.1099/vir.0.031641-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed