1887

Abstract

Yellow fever virus (YFV) causes serious disease in endemic areas of South America and Africa, even though a very well tolerated vaccine is available. YFV primarily targets the liver where as many as 80 % of hepatocytes may be involved during infection. The objective of this project was to compare and contrast the cytokine response from hepatocytes infected with either wild-type (Asibi) or vaccine (17-D-204) strains of YFV, with the goal of identifying responses that might be correlated with disease severity or vaccine efficacy. We report here that PH5CH8 hepatocytes support a productive infection with both wild-type and vaccine-strain YFV. Infection with either virus resulted in elevated expression of several pro- and anti-inflammatory cytokines [interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10 and tumour necrosis factor-α) with a corresponding increase in transcription. Hepatocytes infected with vaccine virus had a more profound response than did cells infected with wild-type virus. Pre-stimulation of hepatocytes with IL-6 resulted in reduced viral titres, elevated concentrations of cytokines released from Asibi virus-infected cells and improved cell viability in cells infected with 17-D virus. Data reported here suggest that 17-D virus stimulates an appropriate antiviral inflammatory response in hepatocytes, while Asibi virus can attenuate the host response. These data identify potential mechanisms that are associated with increased virulence in wild-type virus infections and also provide clues towards potential immune-response limitations that may be associated with vaccine-related adverse events.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031617-0
2011-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2262.html?itemId=/content/journal/jgv/10.1099/vir.0.031617-0&mimeType=html&fmt=ahah

References

  1. Anwar A., Leong K. M., Ng M. L., Chu J. J., Garcia-Blanco M. A.. ( 2009; ). The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. . J Biol Chem 284:, 17021–17029. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bae H.-G., Domingo C., Tenorio A., de Ory F., Muñoz J., Weber P., Teuwen D. E., Niedrig M.. ( 2008; ). Immune response during adverse events after 17D-derived yellow fever vaccination in Europe. . J Infect Dis 197:, 1577–1584. [CrossRef] [PubMed]
    [Google Scholar]
  3. Belsher J. L., Gay P., Brinton M., DellaValla J., Ridenour R., Lanciotti R., Perelygin A., Zaki S., Paddock C., Querec T.. ( 2007; ). Fatal multiorgan failure due to yellow fever vaccine-associated viscerotropic disease. . Vaccine 25:, 8480–8485. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cain K., Freathy C.. ( 2001; ). Liver toxicity and apoptosis: role of TGF-beta1, cytochrome c and the apoptosome. . Toxicol Lett 120:, 307–315. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chan R. C., Penney D. J., Little D., Carter I. W., Roberts J. A., Rawlinson W. D.. ( 2001; ). Hepatitis and death following vaccination with 17D-204 yellow fever vaccine. . Lancet 358:, 121–122. [CrossRef] [PubMed]
    [Google Scholar]
  6. Doblas A., Domingo C., Bae H. G., Bohórquez C. L., de Ory F., Niedrig M., Mora D., Carrasco F. J., Tenorio A.. ( 2006; ). Yellow fever vaccine-associated viscerotropic disease and death in Spain. . J Clin Virol 36:, 156–158. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gardner C. L., Ryman K. D.. ( 2010; ). Yellow fever: a reemerging threat. . Clin Lab Med 30:, 237–260. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gaucher D., Therrien R., Kettaf N., Angermann B. R., Boucher G., Filali-Mouhim A., Moser J. M., Mehta R. S., Drake D. R. III et al. & other authors ( 2008; ). Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. . J Exp Med 205:, 3119–3131. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gerasimon G., Lowry K.. ( 2005; ). Rare case of fatal yellow fever vaccine-associated viscerotropic disease. . South Med J 98:, 653–656. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hacker U. T., Jelinek T., Erhardt S., Eigler A., Hartmann G., Nothdurft H. D., Endres S.. ( 1998; ). In vivo synthesis of tumor necrosis factor-alpha in healthy humans after live yellow fever vaccination. . J Infect Dis 177:, 774–778. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hacker U. T., Erhardt S., Tschöp K., Jelinek T., Endres S.. ( 2001; ). Influence of the IL-1Ra gene polymorphism on in vivo synthesis of IL-1Ra and IL-1β after live yellow fever vaccination. . Clin Exp Immunol 125:, 465–469. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jenkins G.. ( 2008; ). The role of proteases in transforming growth factor-β activation. . Int J Biochem Cell Biol 40:, 1068–1078. [CrossRef] [PubMed]
    [Google Scholar]
  13. Khaiboullina S. F., Rizvanov A. A., Holbrook M. R., St Jeor S.. ( 2005; ). Yellow fever virus strains Asibi and 17D-204 infect human umbilical cord endothelial cells and induce novel changes in gene expression. . Virology 342:, 167–176. [CrossRef] [PubMed]
    [Google Scholar]
  14. Khalil N.. ( 1999; ). TGF-beta: from latent to active. . Microbes Infect 1:, 1255–1263. [CrossRef] [PubMed]
    [Google Scholar]
  15. Klotz O., Belt T. H.. ( 1930; ). The pathology of the liver in yellow fever. . Am J Pathol 6:, 663–688, 1.[PubMed]
    [Google Scholar]
  16. Martinez F. O., Sica A., Mantovani A., Locati M.. ( 2008; ). Macrophage activation and polarization. . Front Biosci 13:, 453–461. [CrossRef] [PubMed]
    [Google Scholar]
  17. Martinez F. O., Helming L., Gordon S.. ( 2009; ). Alternative activation of macrophages: an immunologic functional perspective. . Annu Rev Immunol 27:, 451–483. [CrossRef] [PubMed]
    [Google Scholar]
  18. Monath T. P.. ( 2010; ). Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States. . Am J Trop Med Hyg 82:, 919–921. [CrossRef] [PubMed]
    [Google Scholar]
  19. Monath T. P., Barrett A. D.. ( 2003; ). Pathogenesis and pathophysiology of yellow fever. . Adv Virus Res 60:, 343–395. [CrossRef] [PubMed]
    [Google Scholar]
  20. Monath T. P., Ballinger M. E., Miller B. R., Salaun J. J.. ( 1989; ). Detection of yellow fever viral RNA by nucleic acid hybridization and viral antigen by immunocytochemistry in fixed human liver. . Am J Trop Med Hyg 40:, 663–668.[PubMed]
    [Google Scholar]
  21. Monath T. P., Lee C. K., Julander J. G., Brown A., Beasley D. W., Watts D. M., Hayman E., Guertin P., Makowiecki J., Crowell J.. ( 2010; ). Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity. . Vaccine 28:, 3827–3840. [CrossRef] [PubMed]
    [Google Scholar]
  22. Preiss S., Thompson A., Chen X., Rodgers S., Markovska V., Desmond P., Visvanathan K., Li K., Locarnini S., Revill P.. ( 2008; ). Characterization of the innate immune signalling pathways in hepatocyte cell lines. . J Viral Hepat 15:, 888–900. [CrossRef] [PubMed]
    [Google Scholar]
  23. Quaresma J. A., Barros V. L., Pagliari C., Fernandes E. R., Guedes F., Takakura C. F., Andrade H. F. Jr, Vasconcelos P. F., Duarte M. I.. ( 2006; ). Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-β, TNF-α and NK cells activity. . Virology 345:, 22–30. [CrossRef] [PubMed]
    [Google Scholar]
  24. Quaresma J. A., Barros V. L., Pagliari C., Fernandes E. R., Andrade H. F. Jr, Vasconcelos P. F., Duarte M. I.. ( 2007; ). Hepatocyte lesions and cellular immune response in yellow fever infection. . Trans R Soc Trop Med Hyg 101:, 161–168. [CrossRef] [PubMed]
    [Google Scholar]
  25. Querec T., Bennouna S., Alkan S., Laouar Y., Gorden K., Flavell R., Akira S., Ahmed R., Pulendran B.. ( 2006; ). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. . J Exp Med 203:, 413–424. [CrossRef] [PubMed]
    [Google Scholar]
  26. Raghupathy R., Chaturvedi U. C., Al-Sayer H., Elbishbishi E. A., Agarwal R., Nagar R., Kapoor S., Misra A., Mathur A. et al. & other authors ( 1998; ). Elevated levels of IL-8 in dengue hemorrhagic fever. . J Med Virol 56:, 280–285. [CrossRef] [PubMed]
    [Google Scholar]
  27. Reinhardt B., Jaspert R., Niedrig M., Kostner C., L’age-Stehr J.. ( 1998; ). Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. . J Med Virol 56:, 159–167. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rice C. M., Grakoui A., Galler R., Chambers T. J.. ( 1989; ). Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. . New Biol 1:, 285–296.[PubMed]
    [Google Scholar]
  29. Rummel C., Sachot C., Poole S., Luheshi G. N.. ( 2006; ). Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain. . Am J Physiol Regul Integr Comp Physiol 291:, R1316–R1326. [CrossRef] [PubMed]
    [Google Scholar]
  30. Santos A. P., Matos D. C., Bertho A. L., Mendonça S. C., Marcovistz R.. ( 2008; ). Detection of Th1/Th2 cytokine signatures in yellow fever 17DD first-time vaccinees through ELISpot assay. . Cytokine 42:, 152–155. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sbrana E., Xiao S. Y., Popov V. L., Newman P. C., Tesh R. B.. ( 2006; ). Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus) III. Clinical laboratory values. . Am J Trop Med Hyg 74:, 1084–1089.[PubMed]
    [Google Scholar]
  32. Silva M. L., Espírito-Santo L. R., Martins M. A., Silveira-Lemos D., Peruhype-Magalhães V., Caminha R. C., de Andrade Maranhão-Filho P., Auxiliadora-Martins M., de Menezes Martins R. et al. & other authors ( 2010; ). Clinical and immunological insights on severe, adverse neurotropic and viscerotropic disease following 17D yellow fever vaccination. . Clin Vaccine Immunol 17:, 118–126. [CrossRef] [PubMed]
    [Google Scholar]
  33. Streetz K. L., Wüstefeld T., Klein C., Manns M. P., Trautwein C.. ( 2001; ). Mediators of inflammation and acute phase response in the liver. . Cell Mol Biol (Noisy-le-grand) 47:, 661–673.[PubMed]
    [Google Scholar]
  34. Suffredini A. F., Fantuzzi G., Badolato R., Oppenheim J. J., O’Grady N. P.. ( 1999; ). New insights into the biology of the acute phase response. . J Clin Immunol 19:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
  35. Suksanpaisan L., Cabrera-Hernandez A., Smith D. R.. ( 2007; ). Infection of human primary hepatocytes with dengue virus serotype 2. . J Med Virol 79:, 300–307. [CrossRef] [PubMed]
    [Google Scholar]
  36. Szabo G., Mandrekar P., Dolganiuc A.. ( 2007; ). Innate immune response and hepatic inflammation. . Semin Liver Dis 27:, 339–350. [CrossRef] [PubMed]
    [Google Scholar]
  37. ter Meulen J., Sakho M., Koulemou K., Magassouba N., Bah A., Preiser W., Daffis S., Klewitz C., Bae H. G. et al. & other authors ( 2004; ). Activation of the cytokine network and unfavorable outcome in patients with yellow fever. . J Infect Dis 190:, 1821–1827. [CrossRef] [PubMed]
    [Google Scholar]
  38. Theiler M., Smith H. H.. ( 1937; ). The use of Yellow fever virus modified by in vitro cultivation for human immunization. . J Exp Med 65:, 787–800. [CrossRef] [PubMed]
    [Google Scholar]
  39. van der Beek M. T., Visser L. G., de Maat M. P.. ( 2002; ). Yellow fever vaccination as a model to study the response to stimulation of the inflammation system. . Vascul Pharmacol 39:, 117–121. [CrossRef] [PubMed]
    [Google Scholar]
  40. Verschuur M., van der Beek M. T., Tak H. S., Visser L. G., de Maat M. P.. ( 2004; ). Interindividual variation in the response by fibrinogen, C-reactive protein and interleukin-6 to yellow fever vaccination. . Blood Coagul Fibrinolysis 15:, 399–404. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wheelock E. F., Sibley W. A.. ( 1965; ). Circulating virus, interferon and antibody after vaccination with the 17-D strain of Yellow fever virus. . N Engl J Med 273:, 194–198. [CrossRef] [PubMed]
    [Google Scholar]
  42. Whittembury A., Ramirez G., Hernández H., Ropero A. M., Waterman S., Ticona M., Brinton M., Uchuya J., Gershman M., Toledo W.. ( 2009; ). Viscerotropic disease following yellow fever vaccination in Peru. . Vaccine 27:, 5974–5981. [CrossRef] [PubMed]
    [Google Scholar]
  43. Woodson S. E., Freiberg A. N., Holbrook M. R.. ( 2011; ). Differential cytokine responses from primary human Kupffer cells following infection with wild-type or vaccine strain yellow fever virus. . Virology 412:, 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  44. World Health Organization ( 2006; ). Yellow fever statistics and information. .
  45. Zhou Z., Wang N., Woodson S. E., Dong Q., Wang J., Liang Y., Rijnbrand R., Wei L., Nichols J. E., Guo J.-T.. ( 2011; ). Antiviral activities of ISG20 in positive-strand RNA virus infections. . Virology 409:, 175–188. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031617-0
Loading
/content/journal/jgv/10.1099/vir.0.031617-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2262–2271

Gene expression of cytokines from unstimulated PH5CH8 hepatocytes. Cytokine gene expression from IL-6 pre-stimulated PH5CH8 hepatocytes. Gene expression for TGF-β1 from unstimulated and IL-6 pre-stimulated PH5CH8 hepatocytes. Statistical analysis results for cytokine expression. Statistical analysis results for gene expression.

[ Single PDF file] (75 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error