1887

Abstract

In the field, highly pathogenic avian influenza viruses (HPAIV) originate from low-pathogenic strains of the haemagglutinin (HA) serotypes H5 and H7 that have acquired a polybasic HA cleavage site. This observation suggests the presence of a cryptic virulence potential of H5 and H7 low-pathogenic avian influenza viruses (LPAIV). Among all other LPAIV, the H9N2 strains are of particular relevance as they have become widespread across many countries in several avian species and have been transmitted to humans. To assess the potential of these strains to transform into an HPAIV, we introduced a polybasic cleavage site into the HA of a contemporary H9N2 isolate. Whereas the engineered polybasic HA cleavage site mutant remained a low-pathogenic strain like its parent virus, a reassortant expressing the modified H9 HA with engineered polybasic cleavage site and all the other genes from an H5N1 HPAIV became highly pathogenic in chicken with an intravenous pathogenicity index of 1.23. These results suggest that an HPAIV with a subtype other than H5 or H7 would only emerge under conditions where the HA gene could acquire a polybasic cleavage site and the other viral genes carry additional virulence determinants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031591-0
2011-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1843.html?itemId=/content/journal/jgv/10.1099/vir.0.031591-0&mimeType=html&fmt=ahah

References

  1. Aamir U. B. , Wernery U. , Ilyushina N. , Webster R. G. . ( 2007; ). Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. . Virology 361:, 45–55. [CrossRef].[PubMed]
    [Google Scholar]
  2. Alexander D. J. . ( 2000; ). A review of avian influenza in different bird species. . Vet Microbiol 74:, 3–13. [CrossRef].[PubMed]
    [Google Scholar]
  3. Alexander D. J. . ( 2007; ). An overview of the epidemiology of avian influenza. . Vaccine 25:, 5637–5644. [CrossRef].[PubMed]
    [Google Scholar]
  4. Alexander D. J. . ( 2008; ). Avian influenza. . In Manual of Diagnostic Tests & Vaccines for Terrestrial Animals, chapter 2.3.4, , 6th edn.. Edited by Vallat B. . . OIE;.
    [Google Scholar]
  5. Baigent S. J. , McCauley J. W. . ( 2001; ). Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. . Virus Res 79:, 177–185. [CrossRef].[PubMed]
    [Google Scholar]
  6. Banks J. , Speidel E. S. , Moore E. , Plowright L. , Piccirillo A. , Capua I. , Cordioli P. , Fioretti A. , Alexander D. J. . ( 2001; ). Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. . Arch Virol 146:, 963–973. [CrossRef].[PubMed]
    [Google Scholar]
  7. Bogs J. , Veits J. , Gohrbandt S. , Hundt J. , Stech O. , Breithaupt A. , Teifke J. P. , Mettenleiter T. C. , Stech J. . ( 2010; ). Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. . PLoS ONE 5:, e11826. [CrossRef].[PubMed]
    [Google Scholar]
  8. Butt K. M. , Smith G. J. , Chen H. , Zhang L. J. , Leung Y. H. , Xu K. M. , Lim W. , Webster R. G. , Yuen K. Y. et al. ( 2005; ). Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. . J Clin Microbiol 43:, 5760–5767. [CrossRef].[PubMed]
    [Google Scholar]
  9. Cong Y. L. , Pu J. , Liu Q. F. , Wang S. , Zhang G. Z. , Zhang X. L. , Fan W. X. , Brown E. G. , Liu J. H. . ( 2007; ). Antigenic and genetic characterization of H9N2 swine influenza viruses in China. . J Gen Virol 88:, 2035–2041. [CrossRef].[PubMed]
    [Google Scholar]
  10. Cong Y. L. , Wang C. F. , Yan C. M. , Peng J. S. , Jiang Z. L. , Liu J. H. . ( 2008; ). Swine infection with H9N2 influenza viruses in China in 2004. . Virus Genes 36:, 461–469. [CrossRef].[PubMed]
    [Google Scholar]
  11. Deshpande K. L. , Naeve C. W. , Webster R. G. . ( 1985; ). The neuraminidases of the virulent and avirulent A/Chicken/Pennsylvania/83 (H5N2) influenza A viruses: sequence and antigenic analyses. . Virology 147:, 49–60. [CrossRef].[PubMed]
    [Google Scholar]
  12. Ducatez M. F. , Webster R. G. , Webby R. J. . ( 2008; ). Animal influenza epidemiology. . Vaccine 26: Suppl. 4 D67–D69. [CrossRef].[PubMed]
    [Google Scholar]
  13. García M. , Crawford J. M. , Latimer J. W. , Rivera-Cruz E. , Perdue M. L. . ( 1996; ). Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. . J Gen Virol 77:, 1493–1504. [CrossRef].[PubMed]
    [Google Scholar]
  14. Garten W. , Klenk H. D. . ( 1999; ). Understanding influenza virus pathogenicity. . Trends Microbiol 7:, 99–100. [CrossRef].[PubMed]
    [Google Scholar]
  15. Garten W. , Klenk H.-D. . ( 2008; ). Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis. . In Avian Influenza, pp. 156–167. Edited by Klenk H.-D. , Matrosovich M. N. , Stech J. . . Basel:: Karger;. [CrossRef]
    [Google Scholar]
  16. Gohrbandt S. , Veits J. , Hundt J. , Bogs J. , Breithaupt A. , Teifke J. P. , Weber S. , Mettenleiter T. C. , Stech J. . ( 2010; ). Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. . J Gen Virol 92:, 51–59. [CrossRef].[PubMed]
    [Google Scholar]
  17. Grambas S. , Hay A. J. . ( 1992; ). Maturation of influenza A virus hemagglutinin – estimates of the pH encountered during transport and its regulation by the M2 protein. . Virology 190:, 11–18. [CrossRef].[PubMed]
    [Google Scholar]
  18. Guan Y. , Shortridge K. F. , Krauss S. , Webster R. G. . ( 1999; ). Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A 96:, 9363–9367. [CrossRef].[PubMed]
    [Google Scholar]
  19. Guan Y. , Shortridge K. F. , Krauss S. , Chin P. S. , Dyrting K. C. , Ellis T. M. , Webster R. G. , Peiris M. . ( 2000; ). H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. . J Virol 74:, 9372–9380. [CrossRef].[PubMed]
    [Google Scholar]
  20. Guan Y. , Peiris J. S. , Poon L. L. , Dyrting K. C. , Ellis T. M. , Sims L. , Webster R. G. , Shortridge K. F. . ( 2003; ). Reassortants of H5N1 influenza viruses recently isolated from aquatic poultry in Hong Kong SAR. . Avian Dis 47: Suppl. 911–913. [CrossRef].[PubMed]
    [Google Scholar]
  21. Guo Y. J. , Krauss S. , Senne D. A. , Mo I. P. , Lo K. S. , Xiong X. P. , Norwood M. , Shortridge K. F. , Webster R. G. , Guan Y. . ( 2000; ). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. . Virology 267:, 279–288. [CrossRef].[PubMed]
    [Google Scholar]
  22. Hoffmann E. , Neumann G. , Kawaoka Y. , Hobom G. , Webster R. G. . ( 2000; a). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97:, 6108–6113. [CrossRef].[PubMed]
    [Google Scholar]
  23. Hoffmann E. , Stech J. , Leneva I. , Krauss S. , Scholtissek C. , Chin P. S. , Peiris M. , Shortridge K. F. , Webster R. G. . ( 2000; b). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1?. J Virol 74:, 6309–6315. [CrossRef].[PubMed]
    [Google Scholar]
  24. Jia N. , de Vlas S. J. , Liu Y. X. , Zhang J. S. , Zhan L. , Dang R. L. , Ma Y. H. , Wang X. J. , Liu T. , Yang G.-P. . ( 2009; ). Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. . J Clin Virol 44:, 225–229. [CrossRef].[PubMed]
    [Google Scholar]
  25. Kalthoff D. , Breithaupt A. , Teifke J. P. , Globig A. , Harder T. , Mettenleiter T. C. , Beer M. . ( 2008; ). Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. . Emerg Infect Dis 14:, 1267–1270. [CrossRef].[PubMed]
    [Google Scholar]
  26. Khatchikian D. , Orlich M. , Rott R. . ( 1989; ). Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. . Nature 340:, 156–157. [CrossRef].[PubMed]
    [Google Scholar]
  27. Lin Y. P. , Shaw M. , Gregory V. , Cameron K. , Lim W. , Klimov A. , Subbarao K. , Guan Y. , Krauss S. et al. ( 2000; ). Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. . Proc Natl Acad Sci U S A 97:, 9654–9658. [CrossRef].[PubMed]
    [Google Scholar]
  28. Liu J. H. , Okazaki K. , Mweene A. , Shi W. M. , Wu Q. M. , Su J. L. , Zhang G. Z. , Bai G. R. , Kida H. . ( 2004; ). Genetic conservation of hemagglutinin gene of H9 influenza virus in chicken population in mainland China. . Virus Genes 29:, 329–334. [CrossRef].[PubMed]
    [Google Scholar]
  29. Ma W. , Brenner D. , Wang Z. , Dauber B. , Ehrhardt C. , Högner K. , Herold S. , Ludwig S. , Wolff T. et al. ( 2010; ). The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. . J Virol 84:, 2122–2133. [CrossRef].[PubMed]
    [Google Scholar]
  30. Matrosovich M. N. , Krauss S. , Webster R. G. . ( 2001; ). H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. . Virology 281:, 156–162. [CrossRef].[PubMed]
    [Google Scholar]
  31. Matrosovich M. , Matrosovich T. , Carr J. , Roberts N. A. , Klenk H. D. . ( 2003; ). Overexpression of the α-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. . J Virol 77:, 8418–8425. [CrossRef].[PubMed]
    [Google Scholar]
  32. Munier S. , Larcher T. , Cormier-Aline F. , Soubieux D. , Su B. , Guigand L. , Labrosse B. , Cherel Y. , Quéré P. et al. ( 2010; ). A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. . J Virol 84:, 940–952. [CrossRef].[PubMed]
    [Google Scholar]
  33. Munster V. J. , Schrauwen E. J. , de Wit E. , van den Brand J. M. , Bestebroer T. M. , Herfst S. , Rimmelzwaan G. F. , Osterhaus A. D. , Fouchier R. A. . ( 2010; ). Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. . J Virol 84:, 7953–7960. [CrossRef].[PubMed]
    [Google Scholar]
  34. Ohuchi R. , Ohuchi M. , Garten W. , Klenk H. D. . ( 1991; ). Human influenza virus hemagglutinin with high sensitivity to proteolytic activation. . J Virol 65:, 3530–3537.[PubMed]
    [Google Scholar]
  35. Pasick J. , Handel K. , Robinson J. , Copps J. , Ridd D. , Hills K. , Kehler H. , Cottam-Birt C. , Neufeld J. et al. ( 2005; ). Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. . J Gen Virol 86:, 727–731. [CrossRef].[PubMed]
    [Google Scholar]
  36. Pavlova S. P. , Veits J. , Keil G. M. , Mettenleiter T. C. , Fuchs W. . ( 2009; ). Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase. . Vaccine 27:, 773–785. [CrossRef].[PubMed]
    [Google Scholar]
  37. Peiris M. , Yuen K. Y. , Leung C. W. , Chan K. H. , Ip P. L. , Lai R. W. , Orr W. K. , Shortridge K. F. . ( 1999; ). Human infection with influenza H9N2. . Lancet 354:, 916–917. [CrossRef].[PubMed]
    [Google Scholar]
  38. Perdue M. L. , Garcia M. , Beck J. , Brugh M. , Swayne D. E. . ( 1996; ). An Arg-Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. . Virus Genes 12:, 77–84. [CrossRef].[PubMed]
    [Google Scholar]
  39. Perdue M. L. , García M. , Senne D. , Fraire M. . ( 1997; ). Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. . Virus Res 49:, 173–186. [CrossRef].[PubMed]
    [Google Scholar]
  40. Perk S. , Banet-Noach C. , Shihmanter E. , Pokamunski S. , Pirak M. , Lipkind M. , Panshin A. . ( 2006; a). Genetic characterization of the H9N2 influenza viruses circulated in the poultry population in Israel. . Comp Immunol Microbiol Infect Dis 29:, 207–223. [CrossRef].[PubMed]
    [Google Scholar]
  41. Perk S. , Panshin A. , Shihmanter E. , Gissin I. , Pokamunski S. , Pirak M. , Lipkind M. . ( 2006; b). Ecology and molecular epidemiology of H9N2 avian influenza viruses isolated in Israel during 2000–2004 epizootic. . Dev Biol (Basel) 124:, 201–209.[PubMed]
    [Google Scholar]
  42. Perkins L. E. , Swayne D. E. . ( 2001; ). Pathobiology of A/chicken/Hong Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous species. . Vet Pathol 38:, 149–164. [CrossRef].[PubMed]
    [Google Scholar]
  43. Pfeiffer J. , Pantin-Jackwood M. , To T. L. , Nguyen T. , Suarez D. L. . ( 2009; ). Phylogenetic and biological characterization of highly pathogenic H5N1 avian influenza viruses (Vietnam 2005) in chickens and ducks. . Virus Res 142:, 108–120. [CrossRef].[PubMed]
    [Google Scholar]
  44. Pósfai G. , Plunkett G. III , Fehér T. , Frisch D. , Keil G. M. , Umenhoffer K. , Kolisnychenko V. , Stahl B. , Sharma S. S. et al. ( 2006; ). Emergent properties of reduced-genome Escherichia coli . . Science 312:, 1044–1046. [CrossRef].[PubMed]
    [Google Scholar]
  45. Soda K. , Asakura S. , Okamatsu M. , Sakoda Y. , Kida H. . ( 2011; ). H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. . Virol J 8:, 64. [CrossRef].[PubMed]
    [Google Scholar]
  46. Stech J. , Stech O. , Herwig A. , Altmeppen H. , Hundt J. , Gohrbandt S. , Kreibich A. , Weber S. , Klenk H. D. , Mettenleiter T. C. . ( 2008; ). Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. . Nucleic Acids Res 36:, e139. [CrossRef].[PubMed]
    [Google Scholar]
  47. Stech O. , Veits J. , Weber S. , Deckers D. , Schröer D. , Vahlenkamp T. W. , Breithaupt A. , Teifke J. , Mettenleiter T. C. , Stech J. . ( 2009; ). Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. . J Virol 83:, 5864–5868. [CrossRef].[PubMed]
    [Google Scholar]
  48. Stieneke-Gröber A. , Vey M. , Angliker H. , Shaw E. , Thomas G. , Roberts C. , Klenk H. D. , Garten W. . ( 1992; ). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. . EMBO J 11:, 2407–2414.[PubMed]
    [Google Scholar]
  49. Suarez D. L. . ( 2010; ). Avian influenza: our current understanding. . Anim Health Res Rev 11:, 19–33. [CrossRef].[PubMed]
    [Google Scholar]
  50. Suarez D. L. , Senne D. A. , Banks J. , Brown I. H. , Essen S. C. , Lee C. W. , Manvell R. J. , Mathieu-Benson C. , Moreno V. et al. ( 2004; ). Recombination resulting in virulence shift in avian influenza outbreak, Chile. . Emerg Infect Dis 10:, 693–699.[PubMed] [CrossRef]
    [Google Scholar]
  51. Vey M. , Orlich M. , Adler S. , Klenk H. D. , Rott R. , Garten W. . ( 1992; ). Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. . Virology 188:, 408–413. [CrossRef].[PubMed]
    [Google Scholar]
  52. Wang M. , Fu C. X. , Zheng B. J. . ( 2009; ). Antibodies against H5 and H9 avian influenza among poultry workers in China. . N Engl J Med 360:, 2583–2584. [CrossRef].[PubMed]
    [Google Scholar]
  53. Wasilenko J. L. , Lee C. W. , Sarmento L. , Spackman E. , Kapczynski D. R. , Suarez D. L. , Pantin-Jackwood M. J. . ( 2008; ). NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. . J Virol 82:, 4544–4553. [CrossRef].[PubMed]
    [Google Scholar]
  54. Weber S. , Harder T. , Starick E. , Beer M. , Werner O. , Hoffmann B. , Mettenleiter T. C. , Mundt E. . ( 2007; ). Molecular analysis of highly pathogenic avian influenza virus of subtype H5N1 isolated from wild birds and mammals in northern Germany. . J Gen Virol 88:, 554–558. [CrossRef].[PubMed]
    [Google Scholar]
  55. WHO/OIE/FAO H5N1 Evolution Working Group ( 2008; ). Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). . Emerg Infect Dis 14:, e1.[PubMed]
    [Google Scholar]
  56. Xu K. M. , Li K. S. , Smith G. J. , Li J. W. , Tai H. , Zhang J. X. , Webster R. G. , Peiris J. S. , Chen H. , Guan Y. . ( 2007; ). Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. . J Virol 81:, 2635–2645. [CrossRef].[PubMed]
    [Google Scholar]
  57. Zhirnov O. P. , Klenk H. D. . ( 2009; ). Alterations in caspase cleavage motifs of NP and M2 proteins attenuate virulence of a highly pathogenic avian influenza virus. . Virology 394:, 57–63. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031591-0
Loading
/content/journal/jgv/10.1099/vir.0.031591-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error