1887

Abstract

The difficulty of eliminating herpesvirus carriage makes host entry a key target for infection control. However, its viral requirements are poorly defined. Murid herpesvirus-4 (MuHV-4) can potentially provide insights into gammaherpesvirus host entry. Upper respiratory tract infection requires the MuHV-4 thymidine kinase (TK) and ribonucleotide reductase large subunit (RNR-L), suggesting a need for increased nucleotide production. However, both TK and RNR-L are likely to be multifunctional. We therefore tested further the importance of nucleotide production by disrupting the MuHV-4 ribonucleotide reductase small subunit (RNR-S). This caused a similar attenuation to RNR-L disruption: despite reduced intra-host spread, invasive inoculations still established infection, whereas a non-invasive upper respiratory tract inoculation did so only at high dose. Histological analysis showed that RNR-S, RNR-L and TK viruses all infected cells in the olfactory neuroepithelium but unlike wild-type virus then failed to spread. Thus captured host nucleotide metabolism enzymes, up to now defined mainly as important for alphaherpesvirus reactivation in neurons, also have a key role in gammaherpesvirus host entry. This seemed to reflect a requirement for lytic replication to occur in a terminally differentiated cell before a viable pool of latent genomes could be established.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031542-0
2011-07-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1550.html?itemId=/content/journal/jgv/10.1099/vir.0.031542-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [View Article][PubMed]
    [Google Scholar]
  2. Ator M. A., Stubbe J., Spector T. 1986; Mechanism of ribonucleotide reductase from herpes simplex virus type 1. Evidence for 3′ carbon-hydrogen bond cleavage and inactivation by nucleotide analogs. J Biol Chem 261:3595–3599[PubMed]
    [Google Scholar]
  3. Brune W., Ménard C., Heesemann J., Koszinowski U. H. 2001; A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291:303–305 [View Article][PubMed]
    [Google Scholar]
  4. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol 69:2607–2612 [View Article][PubMed]
    [Google Scholar]
  5. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736–4740 [View Article][PubMed]
    [Google Scholar]
  6. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [View Article][PubMed]
    [Google Scholar]
  7. Conner J., Marsden H., Clements J. B. 1994; Ribonucleotide reductase of herpes viruses. Rev Med Virol 4:25–34 [View Article]
    [Google Scholar]
  8. Darby G. 1993; The acyclovir legacy: its contribution to antiviral drug discovery. J Med Virol 41:Suppl. 1134–138 [View Article][PubMed]
    [Google Scholar]
  9. Davison A. J., Stow N. D. 2005; New genes from old: redeployment of dUTPase by herpesviruses. J Virol 79:12880–12892 [View Article][PubMed]
    [Google Scholar]
  10. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [View Article][PubMed]
    [Google Scholar]
  11. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70:869–879 [View Article][PubMed]
    [Google Scholar]
  12. Faulkner G. C., Krajewski A. S., Crawford D. H. 2000; The ins and outs of EBV infection. Trends Microbiol 8:185–189 [View Article][PubMed]
    [Google Scholar]
  13. Ganem D. 2006; KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 1:273–296 [View Article][PubMed]
    [Google Scholar]
  14. Gaspar M., Gill M. B., Lösing J. B., May J. S., Stevenson P. G. 2008; Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS ONE 3:e2781 [View Article][PubMed]
    [Google Scholar]
  15. Gill M. B., Murphy J. E., Fingeroth J. D. 2005; Functional divergence of Kaposi's sarcoma-associated herpesvirus and related gamma-2 herpesvirus thymidine kinases: novel cytoplasmic phosphoproteins that alter cellular morphology and disrupt adhesion. J Virol 79:14647–14659 [View Article][PubMed]
    [Google Scholar]
  16. Gill M. B., Wright D. E., Smith C. M., May J. S., Stevenson P. G. 2009; Murid herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for host colonization. J Gen Virol 90:1461–1470 [View Article][PubMed]
    [Google Scholar]
  17. Gill M. B., May J. S., Colaco S., Stevenson P. G. 2010; Important role for the murid herpesvirus 4 ribonucleotide reductase large subunit in host colonization via the respiratory tract. J Virol 84:10937–10942 [View Article][PubMed]
    [Google Scholar]
  18. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007; The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS ONE 2:e705 [View Article][PubMed]
    [Google Scholar]
  19. Gustafson E. A., Chillemi A. C., Sage D. R., Fingeroth J. D. 1998; The Epstein–Barr virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob Agents Chemother 42:2923–2931[PubMed]
    [Google Scholar]
  20. Hoagland R. J. 1964; The incubation period of infectious mononucleosis. Am J Public Health Nations Health 54:1699–1705 [View Article][PubMed]
    [Google Scholar]
  21. Hoshino Y., Katano H., Zou P., Hohman P., Marques A., Tyring S. K., Follmann D., Cohen J. I. 2009; Long-term administration of valacyclovir reduces the number of Epstein–Barr virus (EBV)-infected B cells but not the number of EBV DNA copies per B cell in healthy volunteers. J Virol 83:11857–11861 [View Article][PubMed]
    [Google Scholar]
  22. Hutt-Fletcher L. M. 2007; Epstein–Barr virus entry. J Virol 81:7825–7832 [View Article][PubMed]
    [Google Scholar]
  23. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283 [View Article][PubMed]
    [Google Scholar]
  24. Jordan A., Reichard P. 1998; Ribonucleotide reductases. Annu Rev Biochem 67:71–98 [View Article][PubMed]
    [Google Scholar]
  25. Kayhan B., Yager E. J., Lanzer K., Cookenham T., Jia Q., Wu T. T., Woodland D. L., Sun R., Blackman M. A. 2007; A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. J Immunol 179:8392–8402[PubMed] [CrossRef]
    [Google Scholar]
  26. Langelier Y., Bergeron S., Chabaud S., Lippens J., Guilbault C., Sasseville A. M., Denis S., Mosser D. D., Massie B. 2002; The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83:2779–2789[PubMed]
    [Google Scholar]
  27. Milho R., Smith C. M., Marques S., Alenquer M., May J. S., Gillet L., Gaspar M., Efstathiou S., Simas J. P., Stevenson P. G. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32 [View Article][PubMed]
    [Google Scholar]
  28. Moorman N. J., Lin C. Y., Speck S. H. 2004; Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78:10282–10290 [View Article][PubMed]
    [Google Scholar]
  29. Moser J. M., Farrell M. L., Krug L. T., Upton J. W., Speck S. H. 2006; A gammaherpesvirus 68 gene 50 null mutant establishes long-term latency in the lung but fails to vaccinate against a wild-type virus challenge. J Virol 80:1592–1598 [View Article][PubMed]
    [Google Scholar]
  30. Pica F., Volpi A. 2007; Transmission of human herpesvirus 8: an update. Curr Opin Infect Dis 20:152–156 [View Article][PubMed]
    [Google Scholar]
  31. Pontarin G., Fijolek A., Pizzo P., Ferraro P., Rampazzo C., Pozzan T., Thelander L., Reichard P. A., Bianchi V. 2008; Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 105:17801–17806 [View Article][PubMed]
    [Google Scholar]
  32. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849[PubMed]
    [Google Scholar]
  33. Shannon-Lowe C., Adland E., Bell A. I., Delecluse H. J., Rickinson A. B., Rowe M. 2009; Features distinguishing Epstein–Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol 83:7749–7760 [View Article][PubMed]
    [Google Scholar]
  34. Song M. J., Hwang S., Wong W. H., Wu T. T., Lee S., Liao H. I., Sun R. 2005; Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [View Article][PubMed]
    [Google Scholar]
  35. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740[PubMed]
    [Google Scholar]
  36. Stevenson P. G., Simas J. P., Efstathiou S. 2009; Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90:2317–2330 [View Article][PubMed]
    [Google Scholar]
  37. Terry L. A., Stewart J. P., Nash A. A., Fazakerley J. K. 2000; Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81:2635–2643[PubMed]
    [Google Scholar]
  38. Tibbetts S. A., Suarez F., Steed A. L., Simmons J. A., Virgin H. W. IV 2006; A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 353:210–219 [View Article][PubMed]
    [Google Scholar]
  39. Upton J. W., Kaiser W. J., Mocarski E. S. 2010; Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313 [View Article][PubMed]
    [Google Scholar]
  40. Virgin H. W. IV, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904[PubMed]
    [Google Scholar]
  41. Wnuk S. F., Robins M. J. 2006; Ribonucleotide reductase inhibitors as anti-herpes agents. Antiviral Res 71:122–126 [View Article][PubMed]
    [Google Scholar]
  42. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. 1991; The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis 164:1091–1097 [View Article][PubMed]
    [Google Scholar]
  43. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989; Epstein–Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer 43:67–71 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031542-0
Loading
/content/journal/jgv/10.1099/vir.0.031542-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error