1887

Abstract

West Nile virus (WNV) is a member of the family and is a neurotropic pathogen responsible for severe human disease. Flavivirus-infected cells release virus particles that contain variable numbers of precursor membrane (prM) protein molecules at the viral surface. Consequently, antibodies are produced against the prM protein. These antibodies have been shown to activate the infectious potential of fully immature flavivirus particles . Here, we provide proof that prM antibodies render immature WNV infectious. Infection with antibody-opsonized immature WNV particles caused disease and death of mice, and infectious WNV was found in the brains and sera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031427-0
2011-10-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2281.html?itemId=/content/journal/jgv/10.1099/vir.0.031427-0&mimeType=html&fmt=ahah

References

  1. Bai F. , Town T. , Qian F. , Wang P. , Kamanaka M. , Connolly T. M. , Gate D. , Montgomery R. R. , Flavell R. A. , Fikrig E. . ( 2009; ). IL-10 signaling blockade controls murine West Nile virus infection. . PLoS Pathog 5:, e1000610. [CrossRef] [PubMed]
    [Google Scholar]
  2. Calvert A. E. , Kalantarov G. F. , Chang G. J. , Trakht I. , Blair C. D. , Roehrig J. T. . ( 2011; ). Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein. . Virology 410:, 30–37. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cardosa M. J. , Wang S. M. , Sum M. S. , Tio P. H. . ( 2002; ). Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. . BMC Microbiol 2:, 9. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dejnirattisai W. , Jumnainsong A. , Onsirisakul N. , Fitton P. , Vasanawathana S. , Limpitikul W. , Puttikhunt C. , Edwards C. , Duangchinda T. et al. & other authors ( 2010; ). Cross-reacting antibodies enhance dengue virus infection in humans. . Science 328:, 745–748. [CrossRef] [PubMed]
    [Google Scholar]
  5. Elshuber S. , Mandl C. W. . ( 2005; ). Resuscitating mutations in a furin cleavage-deficient mutant of the flavivirus tick-borne encephalitis virus. . J Virol 79:, 11813–11823. [CrossRef] [PubMed]
    [Google Scholar]
  6. Guirakhoo F. , Heinz F. X. , Mandl C. W. , Holzmann H. , Kunz C. . ( 1991; ). Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. . J Gen Virol 72:, 1323–1329. [CrossRef] [PubMed]
    [Google Scholar]
  7. Halstead S. B. . ( 2003; ). Neutralization and antibody-dependent enhancement of dengue viruses. . Adv Virus Res 60:, 421–467. [CrossRef] [PubMed]
    [Google Scholar]
  8. Huang K. J. , Yang Y. C. , Lin Y. S. , Huang J. H. , Liu H. S. , Yeh T. M. , Chen S. H. , Liu C. C. , Lei H. Y. . ( 2006; ). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. . J Immunol 176:, 2825–2832.[PubMed] [CrossRef]
    [Google Scholar]
  9. Junjhon J. , Edwards T. J. , Utaipat U. , Bowman V. D. , Holdaway H. A. , Zhang W. , Keelapang P. , Puttikhunt C. , Perera R. et al. & other authors ( 2010; ). Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. . J Virol 84:, 8353–8358. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kuhn R. J. , Zhang W. , Rossmann M. G. , Pletnev S. V. , Corver J. , Lenches E. , Jones C. T. , Mukhopadhyay S. , Chipman P. R. , Strauss E. G. . ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. . Cell 108:, 717–725. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lai C. Y. , Tsai W. Y. , Lin S. R. , Kao C. L. , Hu H. P. , King C. C. , Wu H. C. , Chang G. J. , Wang W. K. . ( 2008; ). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. . J Virol 82:, 6631–6643. [CrossRef] [PubMed]
    [Google Scholar]
  12. Li L. , Lok S. M. , Yu I. M. , Zhang Y. , Kuhn R. J. , Chen J. , Rossmann M. G. . ( 2008; ). The flavivirus precursor membrane-envelope protein complex: structure and maturation. . Science 319:, 1830–1834. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lindenbach D. R. C. M. . ( 2001; ). Flaviviridae: the viruses and their replication. . In Fields Virology, , 4th edn., pp. 991–1041. Edited by Knipe D. M. , Howley P. M. , Griffin D. E. , Lamb R. A. , Roizman B. , Strauss S. E. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  14. Mackenzie J. S. , Gubler D. J. , Petersen L. R. . ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef] [PubMed]
    [Google Scholar]
  15. Moesker B. , Rodenhuis-Zybert I. A. , Meijerhof T. , Wilschut J. , Smit J. M. . ( 2010; ). Characterization of the functional requirements of West Nile virus membrane fusion. . J Gen Virol 91:, 389–393. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mukhopadhyay S. , Kuhn R. J. , Rossmann M. G. . ( 2005; ). A structural perspective of the flavivirus life cycle. . Nat Rev Microbiol 3:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  17. Rai C.-I. , Lei H.-Y. , Lin Y.-S. , Liu H.-S. , Chen S.-H. , Chen L.-C. , Yeh T.-R. . ( 2008; ). Epitope mapping of Dengue-virus-enhancing monoclonal-antibody using phage display peptide library. . Am J Infect Dis 4:, 76–84. [CrossRef]
    [Google Scholar]
  18. Rodenhuis-Zybert I. A. , van der Schaar H. M. , da Silva Voorham J. M. , van der Ende-Metselaar H. , Lei H. Y. , Wilschut J. , Smit J. M. . ( 2010; ). Immature dengue virus: a veiled pathogen?. PLoS Pathog 6:, e1000718. [CrossRef] [PubMed]
    [Google Scholar]
  19. Stadler K. , Allison S. L. , Schalich J. , Heinz F. X. . ( 1997; ). Proteolytic activation of tick-borne encephalitis virus by furin. . J Virol 71:, 8475–8481.[PubMed]
    [Google Scholar]
  20. van der Schaar H. M. , Rust M. J. , Waarts B. L. , van der Ende-Metselaar H. , Kuhn R. J. , Wilschut J. , Zhuang X. , Smit J. M. . ( 2007; ). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. . J Virol 81:, 12019–12028. [CrossRef] [PubMed]
    [Google Scholar]
  21. van der Schaar H. M. , Rust M. J. , Chen C. , van der Ende-Metselaar H. , Wilschut J. , Zhuang X. , Smit J. M. . ( 2008; ). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. . PLoS Pathog 4:, e1000244. [CrossRef] [PubMed]
    [Google Scholar]
  22. Wang T. , Town T. , Alexopoulou L. , Anderson J. F. , Fikrig E. , Flavell R. A. . ( 2004; ). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. . Nat Med 10:, 1366–1373. [CrossRef] [PubMed]
    [Google Scholar]
  23. Wengler G. , Wengler G. . ( 1989; ). Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. . J Virol 63:, 2521–2526.[PubMed]
    [Google Scholar]
  24. Zybert I. A. , van der Ende-Metselaar H. , Wilschut J. , Smit J. M. . ( 2008; ). Functional importance of dengue virus maturation: infectious properties of immature virions. . J Gen Virol 89:, 3047–3051. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031427-0
Loading
/content/journal/jgv/10.1099/vir.0.031427-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error