Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34 progenitors Free

Abstract

One site of latency of human cytomegalovirus (HCMV; human herpesvirus 5) is known to be CD34 haematopoietic progenitor cells, and it is likely that carriage of latent virus has profound effects on cellular gene expression in order to optimize latency and reactivation. As microRNAs (miRNAs) play important roles in regulating stem-cell gene expression, this study asked whether latent carriage of HCMV led to changes in cellular miRNA expression. A comprehensive miRNA screen showed the differential regulation of a number of cellular miRNAs during HCMV latency in CD34 progenitor cells. One of these, hsa-miR-92a, was robustly decreased in three independent miRNA screens. Latency-induced change in hsa-miR-92a results in an increase in expression of GATA-2 and subsequent increased expression of cellular IL-10, which aids the maintenance of latent viral genomes in CD34 cells, probably resulting from their increased survival.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031377-0
2011-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1539.html?itemId=/content/journal/jgv/10.1099/vir.0.031377-0&mimeType=html&fmt=ahah

References

  1. Baillie J., Sahlender D. A., Sinclair J. H. 2003; Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J Virol 77:7007–7016[PubMed] [CrossRef]
    [Google Scholar]
  2. Bego M., Maciejewski J., Khaiboullina S., Pari G., St Jeor S. 2005; Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus. J Virol 79:11022–11034[PubMed] [CrossRef]
    [Google Scholar]
  3. Bennasser Y., Le S. Y., Yeung M. L., Jeang K. T. 2006; MicroRNAs in human immunodeficiency virus-1 infection. Methods Mol Biol 342:241–253[PubMed]
    [Google Scholar]
  4. Bonauer A., Dimmeler S. 2009; The microRNA-17-92 cluster: still a miRacle?. Cell Cycle 8:3866–3873[PubMed] [CrossRef]
    [Google Scholar]
  5. Burnside J., Morgan R. W. 2007; Genomics and Marek's disease virus. Cytogenet Genome Res 117:376–387[PubMed] [CrossRef]
    [Google Scholar]
  6. Dölken L., Pfeffer S., Koszinowski U. H. 2009; Cytomegalovirus microRNAs. Virus Genes 38:355–364[PubMed] [CrossRef]
    [Google Scholar]
  7. Everett R. D., Murray J. 2005; ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078–5089[PubMed] [CrossRef]
    [Google Scholar]
  8. Fannin Rider P. J., Dunn W., Yang E., Liu F. 2008; Human cytomegalovirus microRNAs. Curr Top Microbiol Immunol 325:21–39[PubMed]
    [Google Scholar]
  9. Garzon R., Croce C. M. 2008; MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358[PubMed] [CrossRef]
    [Google Scholar]
  10. Goodrum F. D., Jordan C. T., High K., Shenk T. 2002; Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A 99:16255–16260[PubMed] [CrossRef]
    [Google Scholar]
  11. Goodrum F., Reeves M., Sinclair J., High K., Shenk T. 2007; Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro . Blood 110:937–945[PubMed] [CrossRef]
    [Google Scholar]
  12. Grey F., Nelson J. 2008; Identification and function of human cytomegalovirus microRNAs. J Clin Virol 41:186–191[PubMed] [CrossRef]
    [Google Scholar]
  13. Grey F., Hook L., Nelson J. 2008; The functions of herpesvirus-encoded microRNAs. Med Microbiol Immunol (Berl) 197:261–267[PubMed] [CrossRef]
    [Google Scholar]
  14. Griffin C., Wang E. C., McSharry B. P., Rickards C., Browne H., Wilkinson G. W., Tomasec P. 2005; Characterization of a highly glycosylated form of the human cytomegalovirus HLA class I homologue gpUL18. J Gen Virol 86:2999–3008[PubMed] [CrossRef]
    [Google Scholar]
  15. Guo H., Ingolia N. T., Weissman J. S., Bartel D. P. 2010; Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840[PubMed] [CrossRef]
    [Google Scholar]
  16. Hahn G., Jores R., Mocarski E. S. 1998; Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 95:3937–3942[PubMed] [CrossRef]
    [Google Scholar]
  17. Hertel L., Lacaille V. G., Strobl H., Mellins E. D., Mocarski E. S. 2003; Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol 77:7563–7574[PubMed] [CrossRef]
    [Google Scholar]
  18. Jenkins C., Abendroth A., Slobedman B. 2004; A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol 78:1440–1447[PubMed] [CrossRef]
    [Google Scholar]
  19. Jonuleit H., Adema G., Schmitt E. 2003; Immune regulation by regulatory T cells: implications for transplantation. Transpl Immunol 11:267–276[PubMed] [CrossRef]
    [Google Scholar]
  20. Jopling C. L. 2008; Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans 36:1220–1223[PubMed] [CrossRef]
    [Google Scholar]
  21. Jovanovic M., Hengartner M. O. 2006; miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187[PubMed] [CrossRef]
    [Google Scholar]
  22. Kerr M. K., Martin M., Churchill G. A. 2000; Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837[PubMed] [CrossRef]
    [Google Scholar]
  23. Kondo K., Mocarski E. S. 1995; Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl 99:63–67[PubMed]
    [Google Scholar]
  24. Krützfeldt J., Rajewsky N., Braich R., Rajeev K. G., Tuschl T., Manoharan M., Stoffel M. 2005; Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689[PubMed] [CrossRef]
    [Google Scholar]
  25. Lakshmipathy U., Love B., Adams C., Thyagarajan B., Chesnut J. D. 2007; Micro RNA profiling: an easy and rapid method to screen and characterize stem cell populations. Methods Mol Biol 407:97–114[PubMed]
    [Google Scholar]
  26. Lu S., Cullen B. R. 2004; Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876[PubMed] [CrossRef]
    [Google Scholar]
  27. Meister G., Landthaler M., Dorsett Y., Tuschl T. 2004; Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550[PubMed] [CrossRef]
    [Google Scholar]
  28. Murphy E., Rigoutsos I., Shibuya T., Shenk T. E. 2003; Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100:13585–13590[PubMed] [CrossRef]
    [Google Scholar]
  29. Niu B. X., Teng L. Q., Wei P. 2009; [Marek's disease virus encoded miRNAs – an update review]. Bing Du Xue Bao 25:154–158 (in Chinese) [PubMed]
    [Google Scholar]
  30. Omoto S., Ito M., Tsutsumi Y., Ichikawa Y., Okuyama H., Brisibe E. A., Saksena N. K., Fujii Y. R. 2004; HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44[PubMed] [CrossRef]
    [Google Scholar]
  31. Pan X., Minegishi N., Harigae H., Yamagiwa H., Minegishi M., Akine Y., Yamamoto M. 2000; Identification of human GATA-2 gene distal IS exon and its expression in hematopoietic stem cell fractions. J Biochem 127:105–112[PubMed] [CrossRef]
    [Google Scholar]
  32. Pfeffer S. 2007; Identification of virally encoded microRNAs. Methods Enzymol 427:51–63[PubMed]
    [Google Scholar]
  33. Pfeffer S., Zavolan M., Grässer F. A., Chien M., Russo J. J., Ju J., John B., Enright A. J., Marks D. et al. 2004; Identification of virus-encoded microRNAs. Science 304:734–736[PubMed] [CrossRef]
    [Google Scholar]
  34. Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grässer F. A., van Dyk L. F., Ho C. K., Shuman S. et al. 2005; Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276[PubMed] [CrossRef]
    [Google Scholar]
  35. Poole E., King C. A., Sinclair J. H., Alcami A. 2006; The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J 25:4390–4399[PubMed] [CrossRef]
    [Google Scholar]
  36. Poole E., Atkins E., Nakayama T., Yoshie O., Groves I., Alcami A., Sinclair J. 2008; NF-κB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 82:4250–4256[PubMed] [CrossRef]
    [Google Scholar]
  37. Reeves M. B., Sinclair J. H. 2010; Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol 91:599–604[PubMed] [CrossRef]
    [Google Scholar]
  38. Reeves M. B., Lehner P. J., Sissons J. G., Sinclair J. H. 2005a). An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86:2949–2954[PubMed] [CrossRef]
    [Google Scholar]
  39. Reeves M. B., MacAry P. A., Lehner P. J., Sissons J. G., Sinclair J. H. 2005b). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102:4140–4145[PubMed] [CrossRef]
    [Google Scholar]
  40. Roback J. D., Hillyer C. D., Drew W. L., Laycock M. E., Luka J., Mocarski E. S., Slobedman B., Smith J. W., Soderberg-Naucler C. et al. 2001; Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors. Transfusion 41:1249–1257[PubMed] [CrossRef]
    [Google Scholar]
  41. Rook A. H. 1988; Interactions of cytomegalovirus with the human immune system. Rev Infect Dis 10:Suppl. 3S460–S467[PubMed] [CrossRef]
    [Google Scholar]
  42. Samols M. A., Hu J., Skalsky R. L., Renne R. 2005; Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 79:9301–9305[PubMed] [CrossRef]
    [Google Scholar]
  43. Sanjabi S., Zenewicz L. A., Kamanaka M., Flavell R. A. 2009; Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9:447–453[PubMed] [CrossRef]
    [Google Scholar]
  44. Shin H. D., Park B. L., Kim L. H., Jung J. H., Kim J. Y., Yoon J. H., Kim Y. J., Lee H.-S. 2003; Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Hum Mol Genet 12:901–906[PubMed] [CrossRef]
    [Google Scholar]
  45. Sinclair J. 2008; Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185[PubMed] [CrossRef]
    [Google Scholar]
  46. Spencer J. V., Cadaoas J., Castillo P. R., Saini V., Slobedman B. 2008; Stimulation of B lymphocytes by cmvIL-10 but not LAcmvIL-10. Virology 374:164–169[PubMed] [CrossRef]
    [Google Scholar]
  47. Stern-Ginossar N., Gur C., Biton M., Horwitz E., Elboim M., Stanietsky N., Mandelboim M., Mandelboim O. 2008; Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9:1065–1073[PubMed] [CrossRef]
    [Google Scholar]
  48. Stern-Ginossar N., Saleh N., Goldberg M. D., Prichard M., Wolf D. G., Mandelboim O. 2009; Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83:10684–10693[PubMed] [CrossRef]
    [Google Scholar]
  49. Sullivan C. S., Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D. 2005; SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686[PubMed] [CrossRef]
    [Google Scholar]
  50. Sullivan C. S., Grundhoff A., Tevethia S., Treisman R., Pipas J. M., Ganem D. 2006; Expression and function of microRNAs in viruses great and small. Cold Spring Harb Symp Quant Biol 71:351–356[PubMed] [CrossRef]
    [Google Scholar]
  51. Swaminathan S. 2008; Noncoding RNAs produced by oncogenic human herpesviruses. J Cell Physiol 216:321–326[PubMed] [CrossRef]
    [Google Scholar]
  52. Tang S., Bertke A. S., Patel A., Wang K., Cohen J. I., Krause P. R. 2008; An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 105:10931–10936[PubMed] [CrossRef]
    [Google Scholar]
  53. Tang S., Patel A., Krause P. R. 2009; Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 83:1433–1442[PubMed] [CrossRef]
    [Google Scholar]
  54. Teobald I., Dunnion D. J., Whitbread M., Curnow S. J., Browning M. J. 2008; Phenotypic and functional differentiation of KG-1 into dendritic-like cells. Immunobiology 213:75–86[PubMed] [CrossRef]
    [Google Scholar]
  55. Tomari Y., Zamore P. D. 2005; Perspective: machines for RNAi. Genes Dev 19:517–529[PubMed] [CrossRef]
    [Google Scholar]
  56. Triboulet R., Mari B., Lin Y.-L., Chable-Bessia C., Bennasser Y., Lebrigand K., Cardinaud B., Maurin T., Barbry P. et al. 2007; Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582[PubMed] [CrossRef]
    [Google Scholar]
  57. Wang F.-Z., Weber F., Croce C., Liu C.-G., Liao X., Pellett P. E. 2008; Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074[PubMed] [CrossRef]
    [Google Scholar]
  58. Weber-Nordt R. M., Henschler R., Schott E., Wehinger J., Behringer D., Mertelsmann R., Finke J. 1996; Interleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells. Blood 88:2549–2558[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031377-0
Loading
/content/journal/jgv/10.1099/vir.0.031377-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed