1887

Abstract

HeLa cells are used to study the life cycles of many different viruses, including the human rhinoviruses (HRV) in the family . Although the natural targets of HRV are human bronchial epithelial cells (hBE), it is generally more difficult to obtain and maintain the relevant primary cell cultures, relative to HeLa cells. Given that the HRV are now identified as a major cause of human asthma exacerbations, it becomes important to document how much of the virus biology learned from HeLa cells is common also to natural primary cells. When compared directly in matched infections using A01a virus, the kinetics of RNA replication, the synthesis and processing of viral proteins and the general subcellular localization of key non-structural proteins were resembled in hBE and HeLa cells. Viral-induced shutoff of host cell processes (e.g. nucleo-cytoplasmic trafficking) was also comparable.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031302-0
2011-11-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2549.html?itemId=/content/journal/jgv/10.1099/vir.0.031302-0&mimeType=html&fmt=ahah

References

  1. Aminev A. G. , Amineva S. P. , Palmenberg A. C. . ( 2003; ). Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. . Virus Res 95:, 45–57. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amineva S. P. , Aminev A. G. , Palmenberg A. C. , Gern J. E. . ( 2004; ). Rhinovirus 3C protease precursors 3CD and 3CD’ localize to the nuclei of infected cells. . J Gen Virol 85:, 2969–2979. [CrossRef] [PubMed]
    [Google Scholar]
  3. Banks-Schlegel S. P. , Gazdar A. F. , Harris C. C. . ( 1985; ). Intermediate filament and cross-linked envelope expression in human lung tumor cell lines. . Cancer Res 45:, 1187–1197.[PubMed]
    [Google Scholar]
  4. Bianco A. , Sethi S. K. , Allen J. T. , Knight R. A. , Spiteri M. A. . ( 1998; ). Th2 cytokines exert a dominant influence on epithelial cell expression of the major group human rhinovirus receptor, ICAM-1. . Eur Respir J 12:, 619–626.[CrossRef]
    [Google Scholar]
  5. Brooks A. M. , Bates M. E. , Vrtis R. F. , Jarjour N. N. , Bertics P. J. , Sedgwick J. B. . ( 2006; ). Urokinase-type plasminogen activator modulates airway eosinophil adhesion in asthma. . Am J Respir Cell Mol Biol 35:, 503–511. [CrossRef] [PubMed]
    [Google Scholar]
  6. Busse W. W. , Gern J. E. , Dick E. C. . ( 1997; ). The role of respiratory viruses in asthma. . Ciba Found Symp 206:, 208–213, discussion 213–219.[PubMed]
    [Google Scholar]
  7. Gern J. E. , Busse W. W. . ( 2002; ). Relationship of viral infections to wheezing illnesses and asthma. . Nat Rev Immunol 2:, 132–138. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gey G. O. , Coffman W. D. , Kubicek M. T. . ( 1952; ). Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. . Cancer Res 12:, 264–265.
    [Google Scholar]
  9. Giard D. J. , Aaronson S. A. , Todaro G. J. , Arnstein P. , Kersey J. H. , Dosik H. , Parks W. P. . ( 1973; ). In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. . J Natl Cancer Inst 51:, 1417–1423.[PubMed]
    [Google Scholar]
  10. Gohara D. W. , Crotty S. , Arnold J. J. , Yoder J. D. , Andino R. , Cameron C. E. . ( 2000; ). Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. . J Biol Chem 275:, 25523–25532. [CrossRef] [PubMed]
    [Google Scholar]
  11. Greve J. M. , Davis G. , Meyer A. M. , Forte C. P. , Yost S. C. , Marlor C. W. , Kamarck M. E. , McClelland A. . ( 1989; ). The major human rhinovirus receptor is ICAM-1. . Cell 56:, 839–847. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gustin K. E. , Sarnow P. . ( 2002; ). Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. . J Virol 76:, 8787–8796. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hudy M. H. , Traves S. L. , Wiehler S. , Proud D. . ( 2010; ). Cigarette smoke modulates rhinovirus-induced airway epithelial cell chemokine production. . Eur Respir J 35:, 1256–1263. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jang Y. J. , Kwon H. J. , Lee B. J. . ( 2006; ). Effect of clarithromycin on rhinovirus-16 infection in A549 cells. . Eur Respir J 27:, 12–19. [CrossRef] [PubMed]
    [Google Scholar]
  15. Konno S. I. , Grindle K. A. , Lee W. M. , Schroth M. K. , Mosser A. G. , Brockman-Schneider R. A. , Busse W. W. , Gern J. E. . ( 2002; ). Interferon-gamma enhances rhinovirus-induced RANTES secretion by airway epithelial cells. . Am J Respir Cell Mol Biol 26:, 594–601.[PubMed] [CrossRef]
    [Google Scholar]
  16. Lee W. M. , Wang W. , Rueckert R. R. . ( 1995; ). Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group. . Virus Genes 9:, 177–181. [CrossRef] [PubMed]
    [Google Scholar]
  17. Macville M. , Schröck E. , Padilla-Nash H. , Keck C. , Ghadimi B. M. , Zimonjic D. , Popescu N. , Ried T. . ( 1999; ). Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. . Cancer Res 59:, 141–150.[PubMed]
    [Google Scholar]
  18. Masters J. R. . ( 2002; ). HeLa cells 50 years on: the good, the bad and the ugly. . Nat Rev Cancer 2:, 315–319. [CrossRef] [PubMed]
    [Google Scholar]
  19. Medappa K. C. , McLean C. , Rueckert R. R. . ( 1971; ). On the structure of rhinovirus 1A. . Virology 44:, 259–270. [CrossRef] [PubMed]
    [Google Scholar]
  20. Miller E. K. , Edwards K. M. , Weinberg G. A. , Iwane M. K. , Griffin M. R. , Hall C. B. , Zhu Y. , Szilagyi P. G. , Morin L. L. et al. ( 2009; ). A novel group of rhinoviruses is associated with asthma hospitalizations. . J Allergy Clin Immunol 123:, 98–104.e1. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mosser A. G. , Brockman-Schneider R. , Amineva S. , Burchell L. , Sedgwick J. B. , Busse W. W. , Gern J. E. . ( 2002; ). Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium. . J Infect Dis 185:, 734–743. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mosser A. G. , Vrtis R. , Burchell L. , Lee W. M. , Dick C. R. , Weisshaar E. , Bock D. , Swenson C. A. , Cornwell R. D. et al. ( 2005; ). Quantitative and qualitative analysis of rhinovirus infection in bronchial tissues. . Am J Respir Crit Care Med 171:, 645–651. [CrossRef] [PubMed]
    [Google Scholar]
  23. Palmenberg A. C. , Spiro D. , Kuzmickas R. , Wang S. , Djikeng A. , Rathe J. A. , Fraser-Liggett C. M. , Liggett S. B. . ( 2009; ). Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. . Science 324:, 55–59. [CrossRef] [PubMed]
    [Google Scholar]
  24. Papi A. , Johnston S. L. . ( 1999; ). Respiratory epithelial cell expression of vascular cell adhesion molecule-1 and its up-regulation by rhinovirus infection via NF-κB and GATA transcription factors. . J Biol Chem 274:, 30041–30051. [CrossRef] [PubMed]
    [Google Scholar]
  25. Park N. , Katikaneni P. , Skern T. , Gustin K. E. . ( 2008; ). Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. . J Virol 82:, 1647–1655. [CrossRef] [PubMed]
    [Google Scholar]
  26. Peng T. , Kotla S. , Bumgarner R. E. , Gustin K. E. . ( 2007; ). Human rhinovirus attenuates the type I interferon response by disrupting activation of interferon regulatory factor 3. . J Virol 81:, 6161. [CrossRef] [PubMed]
    [Google Scholar]
  27. Reddel, R. R., Yang, K. E., Rhim, J. S., Brash, D., Su, R. T., Lechner, J. F., Gerwin, B. I., Harris, C. C. & Amstad, P. (1989). Immortalized human bronchial epithelial mesothelial cell lines. US Patent 4,885,238 dated Dec 5.
  28. Scherer W. F. , Syverton J. T. , Gey G. O. . ( 1953; ). Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. . J Exp Med 97:, 695–710. [CrossRef] [PubMed]
    [Google Scholar]
  29. Schroth M. K. , Grimm E. , Frindt P. , Galagan D. M. , Konno S. I. , Love R. , Gern J. E. . ( 1999; ). Rhinovirus replication causes RANTES production in primary bronchial epithelial cells. . Am J Respir Cell Mol Biol 20:, 1220–1228.[PubMed] [CrossRef]
    [Google Scholar]
  30. Syverton J. T. , Scherer W. F. , Elwood P. M. . ( 1954; ). Studies on the propagation in vitro of poliomyelitis viruses. V. The application of strain HeLa human epithelial cells for isolation and typing. . J Lab Clin Med 43:, 286–302.[PubMed]
    [Google Scholar]
  31. Wang J. H. , Kim H. , Jang Y. J. . ( 2009; ). Cigarette smoke extract enhances rhinovirus-induced toll-like receptor 3 expression and interleukin-8 secretion in A549 cells. . Am J Rhinol Allergy 23:, e5–e9. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang Q. , Nagarkar D. R. , Bowman E. R. , Schneider D. , Gosangi B. , Lei J. , Zhao Y. , McHenry C. L. , Burgens R. V. et al. ( 2009; ). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. . J Immunol 183:, 6989–6997. [CrossRef] [PubMed]
    [Google Scholar]
  33. Zaheer R. S. , Proud D. . ( 2010; ). Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. . Am J Respir Cell Mol Biol 43:, 413–421. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031302-0
Loading
/content/journal/jgv/10.1099/vir.0.031302-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error