1887

Abstract

RNA virus is a non-enveloped icosahedral ssRNA virus infectious to the harmful bloom-forming dinoflagellate, , and which is assumed to be the major natural agent controlling the host population. The viral capsid is constructed from a single gene product. Electron cryo-microscopy revealed that the virus has a diameter of 34 nm and  = 3 symmetry. The 180 quasi-equivalent monomers have an unusual arrangement in that each monomer contributes to a ‘bump’ on the surface of the protein. Though the capsid protein probably has the classic ‘jelly roll’ β-sandwich fold, this is a new packing arrangement and is distantly related to the other positive-sense ssRNA virus capsid proteins. The handedness of the structure has been determined by a novel method involving high resolution scanning electron microscopy of the negatively stained viruses and secondary electron detection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031211-0
2011-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1960.html?itemId=/content/journal/jgv/10.1099/vir.0.031211-0&mimeType=html&fmt=ahah

References

  1. Ambrose R. L., Lander G. C., Maaty W. S., Bothner B., Johnson J. E., Johnson K. N. 2009; Drosophila A virus is an unusual RNA virus with a T = 3 icosahedral core and permuted RNA-dependent RNA polymerase. J Gen Virol 90:2191–2200 [View Article][PubMed]
    [Google Scholar]
  2. Baker T. S., Olson N. H., Fuller S. D. 1999; Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63:862–922[PubMed]
    [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. 2000; The protein data bank. Nucleic Acids Res 28:235–242 [View Article][PubMed]
    [Google Scholar]
  4. Böttcher B., Crowther R. A. 1996; Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus. Structure 4:387–394 [View Article][PubMed]
    [Google Scholar]
  5. Canady M. A., Tihova M., Hanzlik T. N., Johnson J. E., Yeager M. 2000; Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis omega virus (NωV). J Mol Biol 299:573–584 [View Article][PubMed]
    [Google Scholar]
  6. Canady M. A., Tsuruta H., Johnson J. E. 2001; Analysis of rapid, large-scale protein quaternary structural changes: time-resolved X-ray solution scattering of Nudaurelia capensis ω virus (NωV) maturation. J Mol Biol 311:803–814 [View Article][PubMed]
    [Google Scholar]
  7. Carrillo-Tripp M., Shepherd C. M., Borelli I. A., Venkataraman S., Lander G., Natarajan P., Johnson J. E., Brooks C. L. III, Reddy V. S. 2009; VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res 37:Database issueD436–D442 [View Article][PubMed]
    [Google Scholar]
  8. Chapman M. S., Liljas L. 2003; Structural folds of viral proteins. Adv Protein Chem 64:125–196 [View Article][PubMed]
    [Google Scholar]
  9. Cheng R. H., Olson N. H., Baker T. S. 1992; Cauliflower mosaic virus: a 420 subunit (T = 7), multilayer structure. Virology 186:655–668 [View Article][PubMed]
    [Google Scholar]
  10. Crowther R. A. 1971; Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond B Biol Sci 261:221–230 [View Article][PubMed]
    [Google Scholar]
  11. Crowther R. A., Henderson R., Smith J. M. 1996; MRC image processing programs. J Struct Biol 116:9–16 [View Article][PubMed]
    [Google Scholar]
  12. Frank J., Radermacher M., Penczek P., Zhu J., Li Y. H., Ladjadj M., Leith A. 1996; spider and web: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199 [View Article][PubMed]
    [Google Scholar]
  13. Harrison S. C. 1980; Protein interfaces and intersubunit bonding. The case of tomato bushy stunt virus. Biophys J 32:139–153 [View Article][PubMed]
    [Google Scholar]
  14. Horiguchi T. 1995; Heterocapsa circularisquama sp. nov. (Peridiniales, Dinophyceae): a new marine dinoflagellate causing mass mortality of bivalves in Japan. Phycol Res 43:129–136 [View Article][PubMed]
    [Google Scholar]
  15. Koonin E. V., Wolf Y. I., Nagasaki K., Dolja V. V. 2008; The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6:925–939 [View Article][PubMed]
    [Google Scholar]
  16. Lawson C. L., Baker M. L., Best C., Bi C., Dougherty M., Feng P., van Ginkel G., Devkota B., Lagerstedt I. et al. 2011; EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 39:Database issueD456–D464 [View Article][PubMed]
    [Google Scholar]
  17. Lobley A., Sadowski M. I., Jones D. T. 2009; pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767 [View Article][PubMed]
    [Google Scholar]
  18. Ludtke S. J., Baldwin P. R., Chiu W. 1999; eman: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97 [View Article][PubMed]
    [Google Scholar]
  19. Luque D., González J. M., Garriga D., Ghabrial S. A., Havens W. M., Trus B., Verdaguer N., Carrascosa J. L., Castón J. R. 2010; The T = 1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. J Virol 84:7256–7266 [View Article][PubMed]
    [Google Scholar]
  20. Matsuyama Y. 1999; Harmful effect of dinoflagellate Heterocapsa circularisquama on shellfish aquaculture in Japan. Jarq-Japan Agricultural Research Quarterly 33:283–293
    [Google Scholar]
  21. Mindell J. A., Grigorieff N. 2003; Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142:334–347 [View Article][PubMed]
    [Google Scholar]
  22. Mizumoto H., Tomaru Y., Takao Y., Shirai Y., Nagasaki K. 2007; Intraspecies host specificity of a single-stranded RNA virus infecting a marine photosynthetic protist is determined at the early steps of infection. J Virol 81:1372–1378 [View Article][PubMed]
    [Google Scholar]
  23. Munshi S., Liljas L., Cavarelli J., Bomu W., McKinney B., Reddy V., Johnson J. E. 1996; The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J Mol Biol 261:1–10 [View Article][PubMed]
    [Google Scholar]
  24. Nagasaki K., Tomaru Y., Nakanishi K., Hata N., Katanozaka N., Yamaguchi M. 2004; Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay, Japan. Aquat Microb Ecol 34:219–226 [View Article]
    [Google Scholar]
  25. Nagasaki K., Shirai Y., Takao Y., Mizumoto H., Nishida K., Tomaru Y. 2005; Comparison of genome sequences of single-stranded RNA viruses infecting the bivalve-killing dinoflagellate Heterocapsa circularisquama. Appl Environ Microbiol 71:8888–8894 [View Article][PubMed]
    [Google Scholar]
  26. Olson A. J., Bricogne G., Harrison S. C. 1983; Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution. J Mol Biol 171:61–93 [View Article][PubMed]
    [Google Scholar]
  27. Pan J., Dong L., Lin L., Ochoa W. F., Sinkovits R. S., Havens W. M., Nibert M. L., Baker T. S., Ghabrial S. A., Tao Y. J. 2009; Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc Natl Acad Sci U S A 106:4225–4230 [View Article][PubMed]
    [Google Scholar]
  28. Penczek P., Zhu J., Schröder R., Frank J. 1997; Three dimensional reconstruction with contrast transfer compensation from defocus series. Scanning Microsc 11:147–154
    [Google Scholar]
  29. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. 2004; UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  30. Roseman A. M., Berriman J. A., Wynne S. A., Butler P. J. G., Crowther R. A. 2005; A structural model for maturation of the hepatitis B virus core. Proc Natl Acad Sci U S A 102:15821–15826 [View Article][PubMed]
    [Google Scholar]
  31. Rossmann M. G. 1984; Constraints on the assembly of spherical virus particles. Virology 134:1–11 [View Article][PubMed]
    [Google Scholar]
  32. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., Dicuccio M. et al. 2010; Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 38:Database issueD5–D16 [View Article][PubMed]
    [Google Scholar]
  33. Tang L., Johnson K. N., Ball L. A., Lin T., Yeager M., Johnson J. E. 2001; The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat Struct Biol 8:77–83 [View Article][PubMed]
    [Google Scholar]
  34. Tang L., Lin C. S., Krishna N. K., Yeager M., Schneemann A., Johnson J. E. 2002; Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol 76:6370–6375 [View Article][PubMed]
    [Google Scholar]
  35. Tang J., Pan J., Havens W. M., Ochoa W. F., Guu T. S., Ghabrial S. A., Nibert M. L., Tao Y. J., Baker T. S. 2010; Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Biophys J 99:685–694 [View Article][PubMed]
    [Google Scholar]
  36. Tarutani K., Nagasaki K., Itakura S., Yamaguchi M. 2001; Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat Microb Ecol 23:103–111 [View Article]
    [Google Scholar]
  37. Tomaru Y., Katanozaka N., Nishida K., Shirai Y., Tarutani K., Yamaguchi M., Nagasaki K. 2004; Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalgae Heterocapsa circularisquama. Aquat Microb Ecol 34:207–218 [View Article]
    [Google Scholar]
  38. Tomaru Y., Hata N., Masuda T., Tsuji M., Igata K., Masuda Y., Yamatogi T., Sakaguchi M., Nagasaki K. 2007; Ecological dynamics of the bivalve-killing dinoflagellate Heterocapsa circularisquama and its infectious viruses in different locations of western Japan. Environ Microbiol 9:1376–1383 [View Article][PubMed]
    [Google Scholar]
  39. Voss N. R., Gerstein M. 2005; Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. J Mol Biol 346:477–492 [View Article][PubMed]
    [Google Scholar]
  40. Wery J. P., Reddy V. S., Hosur M. V., Johnson J. E. 1994; The refined three-dimensional structure of an insect virus at 2.8 Å resolution. J Mol Biol 235:565–586 [View Article][PubMed]
    [Google Scholar]
  41. Woodward J. D., Wepf R., Sewell B. T. 2009; Three-dimensional reconstruction of biological macromolecular complexes from in-lens scanning electron micrographs. J Microsc 234:287–292 [View Article][PubMed]
    [Google Scholar]
  42. Yokoi T., Yamashita S., Hibi T. 2003; The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311:394–399 [View Article][PubMed]
    [Google Scholar]
  43. Zhu J., Penczek P. A., Schröder R., Frank J. 1997; Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J Struct Biol 118:197–219 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031211-0
Loading
/content/journal/jgv/10.1099/vir.0.031211-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error