1887

Abstract

RNA virus is a non-enveloped icosahedral ssRNA virus infectious to the harmful bloom-forming dinoflagellate, , and which is assumed to be the major natural agent controlling the host population. The viral capsid is constructed from a single gene product. Electron cryo-microscopy revealed that the virus has a diameter of 34 nm and  = 3 symmetry. The 180 quasi-equivalent monomers have an unusual arrangement in that each monomer contributes to a ‘bump’ on the surface of the protein. Though the capsid protein probably has the classic ‘jelly roll’ β-sandwich fold, this is a new packing arrangement and is distantly related to the other positive-sense ssRNA virus capsid proteins. The handedness of the structure has been determined by a novel method involving high resolution scanning electron microscopy of the negatively stained viruses and secondary electron detection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031211-0
2011-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1960.html?itemId=/content/journal/jgv/10.1099/vir.0.031211-0&mimeType=html&fmt=ahah

References

  1. Ambrose R. L., Lander G. C., Maaty W. S., Bothner B., Johnson J. E., Johnson K. N.. ( 2009;). Drosophila A virus is an unusual RNA virus with a T = 3 icosahedral core and permuted RNA-dependent RNA polymerase. . J Gen Virol 90:, 2191–2200. [CrossRef].[PubMed]
    [Google Scholar]
  2. Baker T. S., Olson N. H., Fuller S. D.. ( 1999;). Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. . Microbiol Mol Biol Rev 63:, 862–922.[PubMed]
    [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. ( 2000;). The protein data bank. . Nucleic Acids Res 28:, 235–242. [CrossRef].[PubMed]
    [Google Scholar]
  4. Böttcher B., Crowther R. A.. ( 1996;). Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus. . Structure 4:, 387–394. [CrossRef].[PubMed]
    [Google Scholar]
  5. Canady M. A., Tihova M., Hanzlik T. N., Johnson J. E., Yeager M.. ( 2000;). Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis omega virus (NωV). . J Mol Biol 299:, 573–584. [CrossRef].[PubMed]
    [Google Scholar]
  6. Canady M. A., Tsuruta H., Johnson J. E.. ( 2001;). Analysis of rapid, large-scale protein quaternary structural changes: time-resolved X-ray solution scattering of Nudaurelia capensis ω virus (NωV) maturation. . J Mol Biol 311:, 803–814. [CrossRef].[PubMed]
    [Google Scholar]
  7. Carrillo-Tripp M., Shepherd C. M., Borelli I. A., Venkataraman S., Lander G., Natarajan P., Johnson J. E., Brooks C. L. III, Reddy V. S.. ( 2009;). VIPERdb2: an enhanced and web API enabled relational database for structural virology. . Nucleic Acids Res 37: Database issueD436–D442. [CrossRef].[PubMed]
    [Google Scholar]
  8. Chapman M. S., Liljas L.. ( 2003;). Structural folds of viral proteins. . Adv Protein Chem 64:, 125–196. [CrossRef].[PubMed]
    [Google Scholar]
  9. Cheng R. H., Olson N. H., Baker T. S.. ( 1992;). Cauliflower mosaic virus: a 420 subunit (T = 7), multilayer structure. . Virology 186:, 655–668. [CrossRef].[PubMed]
    [Google Scholar]
  10. Crowther R. A.. ( 1971;). Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. . Philos Trans R Soc Lond B Biol Sci 261:, 221–230. [CrossRef].[PubMed]
    [Google Scholar]
  11. Crowther R. A., Henderson R., Smith J. M.. ( 1996;). MRC image processing programs. . J Struct Biol 116:, 9–16. [CrossRef].[PubMed]
    [Google Scholar]
  12. Frank J., Radermacher M., Penczek P., Zhu J., Li Y. H., Ladjadj M., Leith A.. ( 1996;). spider and web: processing and visualization of images in 3D electron microscopy and related fields. . J Struct Biol 116:, 190–199. [CrossRef].[PubMed]
    [Google Scholar]
  13. Harrison S. C.. ( 1980;). Protein interfaces and intersubunit bonding. The case of tomato bushy stunt virus. . Biophys J 32:, 139–153. [CrossRef].[PubMed]
    [Google Scholar]
  14. Horiguchi T.. ( 1995;). Heterocapsa circularisquama sp. nov. (Peridiniales, Dinophyceae): a new marine dinoflagellate causing mass mortality of bivalves in Japan. . Phycol Res 43:, 129–136. [CrossRef].[PubMed]
    [Google Scholar]
  15. Koonin E. V., Wolf Y. I., Nagasaki K., Dolja V. V.. ( 2008;). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. . Nat Rev Microbiol 6:, 925–939. [CrossRef].[PubMed]
    [Google Scholar]
  16. Lawson C. L., Baker M. L., Best C., Bi C., Dougherty M., Feng P., van Ginkel G., Devkota B., Lagerstedt I. et al. ( 2011;). EMDataBank.org: unified data resource for CryoEM. . Nucleic Acids Res 39: Database issueD456–D464. [CrossRef].[PubMed]
    [Google Scholar]
  17. Lobley A., Sadowski M. I., Jones D. T.. ( 2009;). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. . Bioinformatics 25:, 1761–1767. [CrossRef].[PubMed]
    [Google Scholar]
  18. Ludtke S. J., Baldwin P. R., Chiu W.. ( 1999;). eman: semiautomated software for high-resolution single-particle reconstructions. . J Struct Biol 128:, 82–97. [CrossRef].[PubMed]
    [Google Scholar]
  19. Luque D., González J. M., Garriga D., Ghabrial S. A., Havens W. M., Trus B., Verdaguer N., Carrascosa J. L., Castón J. R.. ( 2010;). The T = 1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. . J Virol 84:, 7256–7266. [CrossRef].[PubMed]
    [Google Scholar]
  20. Matsuyama Y.. ( 1999;). Harmful effect of dinoflagellate Heterocapsa circularisquama on shellfish aquaculture in Japan. . Jarq-Japan Agricultural Research Quarterly 33:, 283–293.
    [Google Scholar]
  21. Mindell J. A., Grigorieff N.. ( 2003;). Accurate determination of local defocus and specimen tilt in electron microscopy. . J Struct Biol 142:, 334–347. [CrossRef].[PubMed]
    [Google Scholar]
  22. Mizumoto H., Tomaru Y., Takao Y., Shirai Y., Nagasaki K.. ( 2007;). Intraspecies host specificity of a single-stranded RNA virus infecting a marine photosynthetic protist is determined at the early steps of infection. . J Virol 81:, 1372–1378. [CrossRef].[PubMed]
    [Google Scholar]
  23. Munshi S., Liljas L., Cavarelli J., Bomu W., McKinney B., Reddy V., Johnson J. E.. ( 1996;). The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. . J Mol Biol 261:, 1–10. [CrossRef].[PubMed]
    [Google Scholar]
  24. Nagasaki K., Tomaru Y., Nakanishi K., Hata N., Katanozaka N., Yamaguchi M.. ( 2004;). Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay, Japan. . Aquat Microb Ecol 34:, 219–226. [CrossRef]
    [Google Scholar]
  25. Nagasaki K., Shirai Y., Takao Y., Mizumoto H., Nishida K., Tomaru Y.. ( 2005;). Comparison of genome sequences of single-stranded RNA viruses infecting the bivalve-killing dinoflagellate Heterocapsa circularisquama. . Appl Environ Microbiol 71:, 8888–8894. [CrossRef].[PubMed]
    [Google Scholar]
  26. Olson A. J., Bricogne G., Harrison S. C.. ( 1983;). Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution. . J Mol Biol 171:, 61–93. [CrossRef].[PubMed]
    [Google Scholar]
  27. Pan J., Dong L., Lin L., Ochoa W. F., Sinkovits R. S., Havens W. M., Nibert M. L., Baker T. S., Ghabrial S. A., Tao Y. J.. ( 2009;). Atomic structure reveals the unique capsid organization of a dsRNA virus. . Proc Natl Acad Sci U S A 106:, 4225–4230. [CrossRef].[PubMed]
    [Google Scholar]
  28. Penczek P., Zhu J., Schröder R., Frank J.. ( 1997;). Three dimensional reconstruction with contrast transfer compensation from defocus series. . Scanning Microsc 11:, 147–154.
    [Google Scholar]
  29. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. ( 2004;). UCSF Chimera – a visualization system for exploratory research and analysis. . J Comput Chem 25:, 1605–1612. [CrossRef].[PubMed]
    [Google Scholar]
  30. Roseman A. M., Berriman J. A., Wynne S. A., Butler P. J. G., Crowther R. A.. ( 2005;). A structural model for maturation of the hepatitis B virus core. . Proc Natl Acad Sci U S A 102:, 15821–15826. [CrossRef].[PubMed]
    [Google Scholar]
  31. Rossmann M. G.. ( 1984;). Constraints on the assembly of spherical virus particles. . Virology 134:, 1–11. [CrossRef].[PubMed]
    [Google Scholar]
  32. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., Dicuccio M. et al. ( 2010;). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 38: Database issueD5–D16. [CrossRef].[PubMed]
    [Google Scholar]
  33. Tang L., Johnson K. N., Ball L. A., Lin T., Yeager M., Johnson J. E.. ( 2001;). The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. . Nat Struct Biol 8:, 77–83. [CrossRef].[PubMed]
    [Google Scholar]
  34. Tang L., Lin C. S., Krishna N. K., Yeager M., Schneemann A., Johnson J. E.. ( 2002;). Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. . J Virol 76:, 6370–6375. [CrossRef].[PubMed]
    [Google Scholar]
  35. Tang J., Pan J., Havens W. M., Ochoa W. F., Guu T. S., Ghabrial S. A., Nibert M. L., Tao Y. J., Baker T. S.. ( 2010;). Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. . Biophys J 99:, 685–694. [CrossRef].[PubMed]
    [Google Scholar]
  36. Tarutani K., Nagasaki K., Itakura S., Yamaguchi M.. ( 2001;). Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. . Aquat Microb Ecol 23:, 103–111. [CrossRef]
    [Google Scholar]
  37. Tomaru Y., Katanozaka N., Nishida K., Shirai Y., Tarutani K., Yamaguchi M., Nagasaki K.. ( 2004;). Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalgae Heterocapsa circularisquama. . Aquat Microb Ecol 34:, 207–218. [CrossRef]
    [Google Scholar]
  38. Tomaru Y., Hata N., Masuda T., Tsuji M., Igata K., Masuda Y., Yamatogi T., Sakaguchi M., Nagasaki K.. ( 2007;). Ecological dynamics of the bivalve-killing dinoflagellate Heterocapsa circularisquama and its infectious viruses in different locations of western Japan. . Environ Microbiol 9:, 1376–1383. [CrossRef].[PubMed]
    [Google Scholar]
  39. Voss N. R., Gerstein M.. ( 2005;). Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. . J Mol Biol 346:, 477–492. [CrossRef].[PubMed]
    [Google Scholar]
  40. Wery J. P., Reddy V. S., Hosur M. V., Johnson J. E.. ( 1994;). The refined three-dimensional structure of an insect virus at 2.8 Å resolution. . J Mol Biol 235:, 565–586. [CrossRef].[PubMed]
    [Google Scholar]
  41. Woodward J. D., Wepf R., Sewell B. T.. ( 2009;). Three-dimensional reconstruction of biological macromolecular complexes from in-lens scanning electron micrographs. . J Microsc 234:, 287–292. [CrossRef].[PubMed]
    [Google Scholar]
  42. Yokoi T., Yamashita S., Hibi T.. ( 2003;). The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. . Virology 311:, 394–399. [CrossRef].[PubMed]
    [Google Scholar]
  43. Zhu J., Penczek P. A., Schröder R., Frank J.. ( 1997;). Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. . J Struct Biol 118:, 197–219. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031211-0
Loading
/content/journal/jgv/10.1099/vir.0.031211-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1960–1970

Twofold, threefold and fivefold surface views of the negative reconstruction of HcRNAV and Fourier shell correlation and differential phase residual of the final negative-stain reconstruction of HcRNAV109. The two independent cryoEM reconstructions of HcRNAV109 after ten iterations depicted as having different handedness. The surface of structure shown at a higher isosurface threshold. Predicted secondary structure (using psipred; Jones, 1999) and sequence of the HcRNAV109 capsid protein aligned to the BBV capsid protein sequence and secondary structure.

[ Single PDF file] (424 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error