1887

Abstract

Mycoreovirus 1 (MyRV1), a member of the family possessing a genome consisting of 11 dsRNA segments (S1–S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, hypovirus 1 (CHV1) strain EP713, of the family with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031138-0
2011-08-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/8/1949.html?itemId=/content/journal/jgv/10.1099/vir.0.031138-0&mimeType=html&fmt=ahah

References

  1. Arella M., Lavallée C., Belloncik S., Furuichi Y. 1988; Molecular cloning and characterization of cytoplasmic polyhedrosis virus polyhedrin and a viable deletion mutant gene. J Virol 62:211–217[PubMed]
    [Google Scholar]
  2. Asamizu T., Summers D., Motika M. B., Anzola J. V., Nuss D. L. 1985; Molecular cloning and characterization of the genome of wound tumor virus: a tumor-inducing plant reovirus. Virology 144:398–409 [View Article][PubMed]
    [Google Scholar]
  3. Boyce M., Celma C. C., Roy P. 2008; Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. J Virol 82:8339–8348 [View Article][PubMed]
    [Google Scholar]
  4. Cao D., Barro M., Hoshino Y. 2008; Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering. J Virol 82:6073–6077 [View Article][PubMed]
    [Google Scholar]
  5. Chetverin A. B. 1999; The puzzle of RNA recombination. FEBS Lett 460:1–5 [View Article][PubMed]
    [Google Scholar]
  6. Choi G. H., Shapira R., Nuss D. L. 1991; Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc Natl Acad Sci U S A 88:1167–1171 [View Article][PubMed]
    [Google Scholar]
  7. Craven M. G., Pawlyk D. M., Choi G. H., Nuss D. L. 1993; Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol 67:6513–6521[PubMed]
    [Google Scholar]
  8. Desselberger U. 1996; Genome rearrangements of rotaviruses. Adv Virus Res 46:69–95 [View Article][PubMed]
    [Google Scholar]
  9. Eaton B. T., Gould A. R. 1987; Isolation and characterization of orbivirus genotypic variants. Virus Res 6:363–382 [View Article][PubMed]
    [Google Scholar]
  10. Eusebio-Cope A., Sun L., Hillman B. I., Suzuki N. 2010; Mycoreovirus 1 S4-coded protein is dispensable for viral replication but necessary for efficient vertical transmission and normal symptom induction. Virology 397:399–408 [View Article][PubMed]
    [Google Scholar]
  11. Gault E., Schnepf N., Poncet D., Servant A., Teran S., Garbarg-Chenon A. 2001; A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. J Virol 75:7305–7314 [View Article][PubMed]
    [Google Scholar]
  12. González S. A., Mattion N. M., Bellinzoni R., Burrone O. R. 1989; Structure of rearranged genome segment 11 in two different rotavirus strains generated by a similar mechanism. J Gen Virol 70:1329–1336 [View Article][PubMed]
    [Google Scholar]
  13. Grimes J. M., Burroughs J. N., Gouet P., Diprose J. M., Malby R., Ziéntara S., Mertens P. P. C., Stuart D. I. 1998; The atomic structure of the bluetongue virus core. Nature 395:470–478 [View Article][PubMed]
    [Google Scholar]
  14. Hill C. L., Booth T. F., Prasad B. V. V., Grimes J. M., Mertens P. P. C., Sutton G. C., Stuart D. I. 1999; The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568 [View Article][PubMed]
    [Google Scholar]
  15. Hillman B. I., Supyani S., Kondo H., Suzuki N. 2004; A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J Virol 78:892–898 [View Article][PubMed]
    [Google Scholar]
  16. Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U. 1987; Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. J Virol 61:3365–3372[PubMed]
    [Google Scholar]
  17. Kasschau K. D., Carrington J. C. 1998; A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470 [View Article][PubMed]
    [Google Scholar]
  18. Kobayashi T., Antar A. A., Boehme K. W., Danthi P., Eby E. A., Guglielmi K. M., Holm G. H., Johnson E. M., Maginnis M. S., Naik S. 2007; A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1:147–157 [View Article][PubMed]
    [Google Scholar]
  19. Kojima K., Taniguchi K., Kawagishi-Kobayashi M., Matsuno S., Urasawa S. 2000; Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus Res 67:163–171 [View Article][PubMed]
    [Google Scholar]
  20. Komoto S., Sasaki J., Taniguchi K. 2006; Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci U S A 103:4646–4651 [View Article][PubMed]
    [Google Scholar]
  21. Koonin E. V., Choi G. H., Nuss D. L., Shapira R., Carrington J. C. 1991; Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc Natl Acad Sci U S A 88:10647–10651 [View Article][PubMed]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  23. Lai M. M. 1992; RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79[PubMed]
    [Google Scholar]
  24. Maia I. G., Haenni A., Bernardi F. 1996; Potyviral HC-Pro: a multifunctional protein. J Gen Virol 77:1335–1341 [View Article][PubMed]
    [Google Scholar]
  25. Maoka T., Omura T., Harjosudarmo J., Usugi T., Hibino H., Tsuchizaki T. 1993; Loss of vector-transmissibility by maintaining rice ragged stunt virus in rice plants without vector transmission. Ann Phytopath Soc Japan 59:185–187 [CrossRef]
    [Google Scholar]
  26. Matsuo E., Celma C. C., Roy P. 2010; A reverse genetics system of African horse sickness virus reveals existence of primary replication. FEBS Lett 584:3386–3391 [View Article][PubMed]
    [Google Scholar]
  27. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. 1987; Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol 68:1233–1250 [View Article][PubMed]
    [Google Scholar]
  28. Murao K., Uyeda I., Ando Y., Kimura I., Cabauatan P. Q., Koganezawa H. 1996; Genomic rearrangement in genome segment 12 of rice dwarf phytoreovirus. Virology 216:238–240 [View Article][PubMed]
    [Google Scholar]
  29. Nagy P. D., Simon A. E. 1997; New insights into the mechanisms of RNA recombination. Virology 235:1–9 [View Article][PubMed]
    [Google Scholar]
  30. Nakagawa A., Miyazaki N., Taka J., Naitow H., Ogawa A., Fujimoto Z., Mizuno H., Higashi T., Watanabe Y., Omura T. 2003; The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238 [View Article][PubMed]
    [Google Scholar]
  31. Nuss D. L. 1984; Molecular biology of wound tumor virus. Adv Virus Res 29:57–93 [View Article][PubMed]
    [Google Scholar]
  32. Patton J. T., Taraporewala Z., Chen D., Chizhikov V., Jones M., Elhelu A., Collins M., Kearney K., Wagner M. et al. 2001; Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. J Virol 75:2076–2086 [View Article][PubMed]
    [Google Scholar]
  33. Pu Y., Kikuchi A., Moriyasu Y., Tomaru M., Jin Y., Suga H., Hagiwara K., Akita F., Shimizu T. et al. 2011; Rice dwarf viruses with dysfunctional genomes generated in plants are filtered out in vector insects: implications for the origin of the virus. J Virol 85:2975–2979 [View Article][PubMed]
    [Google Scholar]
  34. Reinisch K. M., Nibert M. L., Harrison S. C. 2000; Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–967 [View Article][PubMed]
    [Google Scholar]
  35. Schnepf N., Deback C., Dehee A., Gault E., Parez N., Garbarg-Chenon A. 2008; Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. J Virol 82:3689–3696 [View Article][PubMed]
    [Google Scholar]
  36. Segers G. C., van Wezel R., Zhang X., Hong Y., Nuss D. L. 2006; Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cell 5:896–904 [View Article][PubMed]
    [Google Scholar]
  37. Sun L. Y., Suzuki N. 2008; Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. RNA 14:2557–2571 [View Article][PubMed]
    [Google Scholar]
  38. Sun L. Y., Nuss D. L., Suzuki N. 2006; Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 87:3703–3714 [View Article][PubMed]
    [Google Scholar]
  39. Supyani S., Hillman B. I., Suzuki N. 2007; Baculovirus expression of the 11 mycoreovirus-1 genome segments and identification of the guanylyltransferase-encoding segment. J Gen Virol 88:342–350 [View Article][PubMed]
    [Google Scholar]
  40. Suzuki N., Nuss D. L. 2002; Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J Virol 76:7747–7759 [View Article][PubMed]
    [Google Scholar]
  41. Suzuki N., Watanabe Y., Kusano T., Kitagawa Y. 1990; Sequence analysis of rice dwarf phytoreovirus genome segments S4, S5, and S6: comparison with the equivalent wound tumor virus segments. Virology 179:446–454 [View Article][PubMed]
    [Google Scholar]
  42. Suzuki N., Sugawara M., Kusano T., Mori H., Matsuura Y. 1994; Immunodetection of rice dwarf phytoreoviral proteins in both insect and plant hosts. Virology 202:41–48 [View Article][PubMed]
    [Google Scholar]
  43. Suzuki N., Chen B., Nuss D. L. 1999; Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J Virol 73:9478–9484[PubMed]
    [Google Scholar]
  44. Suzuki N., Maruyama K., Moriyama M., Nuss D. L. 2003; Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J Virol 77:11697–11707 [View Article][PubMed]
    [Google Scholar]
  45. Suzuki N., Supyani S., Maruyama K., Hillman B. I. 2004; Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. . J Gen Virol 85:3437–3448 [View Article][PubMed]
    [Google Scholar]
  46. Taniguchi K., Urasawa S. 1995; Diversity in rotavirus genomes. Semin Virol 6:123–131 [View Article]
    [Google Scholar]
  47. Taniguchi K., Kojima K., Urasawa S. 1996; Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153 to 155. J Virol 70:4125–4130[PubMed]
    [Google Scholar]
  48. Trask S. D., Taraporewala Z. F., Boehme K. W., Dermody T. S., Patton J. T. 2010; Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc Natl Acad Sci U S A 107:18652–18657 [View Article][PubMed]
    [Google Scholar]
  49. Troupin C., Dehée A., Schnuriger A., Vende P., Poncet D., Garbarg-Chenon A. 2010; Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. J Virol 84:6711–6719 [View Article][PubMed]
    [Google Scholar]
  50. Vogel H. 1956; A convenient medium for Neurospora (medium N). Microbiol Genet Bull 13:42–43
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.031138-0
Loading
/content/journal/jgv/10.1099/vir.0.031138-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error