1887

Abstract

The vaccinia virus A56 protein was one of the earliest-described poxvirus proteins with an identifiable activity. While originally characterized as a haemagglutinin protein, A56 has other functions as well. The A56 protein is capable of binding two viral proteins, a serine protease inhibitor (K2) and the vaccinia virus complement control protein (VCP), and anchoring them to the surface of infected cells. This is important; while both proteins have biologically relevant functions at the cell surface, neither one can locate there on its own. The A56–K2 complex reduces the amount of virus superinfecting an infected cell and also prevents the formation of syncytia by infected cells; the A56–VCP complex can protect infected cells from complement attack. Deletion of the gene results in varying effects on vaccinia virus virulence. In addition, since the gene encoding the A56 protein is non-essential, it can be used as an insertion point for foreign genes and has been deleted in some viruses that are in clinical development as oncolytic agents.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030460-0
2011-09-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/1971.html?itemId=/content/journal/jgv/10.1099/vir.0.030460-0&mimeType=html&fmt=ahah

References

  1. Aguado B., Selmes I. P., Smith G. L. 1992; Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 73:2887–2902 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Bernet J., Mullick J., Singh A. K., Sahu A. 2003; Viral mimicry of the complement system. J Biosci 28:249–264 [View Article][PubMed]
    [Google Scholar]
  4. Bernet J., Mullick J., Panse Y., Parab P. B., Sahu A. 2004; Kinetic analysis of the interactions between vaccinia virus complement control protein and human complement proteins C3b and C4b. J Virol 78:9446–9457 [View Article][PubMed]
    [Google Scholar]
  5. Berngruber T. W., Weissing F. J., Gandon S. 2010; Inhibition of superinfection and the evolution of viral latency. J Virol 84:10200–10208 [View Article][PubMed]
    [Google Scholar]
  6. Blackman K. E., Bubel H. C. 1972; Origin of the vaccinia virus hemagglutinin. J Virol 9:290–296[PubMed]
    [Google Scholar]
  7. Blasco R., Moss B. 1991; Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol 65:5910–5920[PubMed]
    [Google Scholar]
  8. Boursnell M. E., Foulds I. J., Campbell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. J Gen Virol 69:2995–3003 [View Article][PubMed]
    [Google Scholar]
  9. Brown C. K., Turner P. C., Moyer R. W. 1991; Molecular characterization of the vaccinia virus hemagglutinin gene. J Virol 65:3598–3606[PubMed]
    [Google Scholar]
  10. Brum L. M., Turner P. C., Devick H., Baquero M. T., Moyer R. W. 2003; Plasma membrane localization and fusion inhibitory activity of the cowpox virus serpin SPI-3 require a functional signal sequence and the virus encoded hemagglutinin. Virology 306:289–302 [View Article][PubMed]
    [Google Scholar]
  11. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M. et al. 1998; Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921 [View Article][PubMed]
    [Google Scholar]
  12. Cavallaro K. F., Esposito J. J. 1992; Sequences of the raccoon poxvirus hemagglutinin protein. Virology 190:434–439 [View Article][PubMed]
    [Google Scholar]
  13. Chang S. J., Chang Y. X., Izmailyan R., Tang Y. L., Chang W. 2010; Vaccinia virus A25 and A26 proteins are fusion suppressors for mature virions and determine strain-specific virus entry pathways into HeLa, CHO-K1, and L cells. J Virol 84:8422–8432 [View Article][PubMed]
    [Google Scholar]
  14. Chen V. B., Arendall W. B. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C. 2010; MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21 [View Article][PubMed]
    [Google Scholar]
  15. Chung K. M., Liszewski M. K., Nybakken G., Davis A. E., Townsend R. R., Fremont D. H., Atkinson J. P., Diamond M. S. 2006; West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 103:19111–19116 [View Article][PubMed]
    [Google Scholar]
  16. DeHaven B. C., Girgis N. M., Xiao Y., Hudson P. N., Olson V. A., Damon I. K., Isaacs S. N. 2010; Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. J Virol 84:11245–11254 [View Article][PubMed]
    [Google Scholar]
  17. Doceul V., Hollinshead M., van der Linden L., Smith G. L. 2010; Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327:873–876 [View Article][PubMed]
    [Google Scholar]
  18. Erez N., Paran N., Maik-Rachline G., Politi B., Israely T., Schnider P., Fuchs P., Melamed S., Lustig S. 2009; Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex. Virol J 6:151 [View Article][PubMed]
    [Google Scholar]
  19. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A. 2006; Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 5:Unit 5.6[PubMed]
    [Google Scholar]
  20. Fenner F., Henderson D. A., Arita I., Jezek Z., Ladnyi D. 1988 Smallpox and Its Eradication Geneva: WHO;
    [Google Scholar]
  21. Flexner C., Hügin A., Moss B. 1987; Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 330:259–262 [View Article][PubMed]
    [Google Scholar]
  22. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309:633–635 [View Article][PubMed]
    [Google Scholar]
  23. Galmiche M. C., Goenaga J., Wittek R., Rindisbacher L. 1999; Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254:71–80 [View Article][PubMed]
    [Google Scholar]
  24. Gentschev I., Ehrig K., Donat U., Hess M., Rudolph S., Chen N., Yu Y. A., Zhang Q., Bullerdiek J. et al. 2010; Significant growth inhibition of canine mammary carcinoma xenografts following treatment with oncolytic vaccinia virus GLV-1h68. J Oncol 2010:736907[PubMed] [CrossRef]
    [Google Scholar]
  25. Girgis N. M., Dehaven B. C., Fan X., Viner K. M., Shamim M., Isaacs S. N. 2008; Cell surface expression of the vaccinia virus complement control protein is mediated by interaction with the viral A56 protein and protects infected cells from complement attack. J Virol 82:4205–4214 [View Article][PubMed]
    [Google Scholar]
  26. Girgis N. M., Dehaven B. C., Xiao Y., Alexander E., Viner K. M., Isaacs S. N. 2011; The vaccinia virus complement control protein modulates adaptive immune responses during infection. J Virol 85:2547–2556 [View Article][PubMed]
    [Google Scholar]
  27. Gras S., Burrows S. R., Kjer-Nielsen L., Clements C. S., Liu Y. C., Sullivan L. C., Bell M. J., Brooks A. G., Purcell A. W., McCluskey J. 2009; The shaping of T cell receptor recognition by self-tolerance. Immunity 30:193–203 [View Article][PubMed]
    [Google Scholar]
  28. Harris S. L., Frank I., Yee A., Cohen G. H., Eisenberg R. J., Friedman H. M. 1990; Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 162:331–337 [View Article][PubMed]
    [Google Scholar]
  29. Huang I. C., Li W., Sui J., Marasco W., Choe H., Farzan M. 2008; Influenza A virus neuraminidase limits viral superinfection. J Virol 82:4834–4843 [View Article][PubMed]
    [Google Scholar]
  30. Hutin Y. J., Williams R. J., Malfait P., Pebody R., Loparev V. N., Ropp S. L., Rodriguez M., Knight J. C., Tshioko F. K. et al. 2001; Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerg Infect Dis 7:434–438[PubMed] [CrossRef]
    [Google Scholar]
  31. Ichihashi Y. 1977; Vaccinia-specific hemagglutinin. Virology 76:527–538 [View Article][PubMed]
    [Google Scholar]
  32. Ichihashi Y., Dales S. 1971; Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology 46:533–543 [View Article][PubMed]
    [Google Scholar]
  33. Isaacs S. N., Kotwal G. J., Moss B. 1992; Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A 89:628–632 [View Article][PubMed]
    [Google Scholar]
  34. Izmailyan R., Chang W. 2008; Vaccinia virus WR53.5/F14.5 protein is a new component of intracellular mature virus and is important for calcium-independent cell adhesion and vaccinia virus virulence in mice. J Virol 82:10079–10087 [View Article][PubMed]
    [Google Scholar]
  35. Jin D. Y., Li Z. L., Jin Q., Hao Y. W., Hou Y. D. 1989; Vaccinia virus hemagglutinin. A novel member of the immunoglobulin superfamily. J Exp Med 170:571–576 [View Article][PubMed]
    [Google Scholar]
  36. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178 [View Article][PubMed]
    [Google Scholar]
  37. Kotwal G. J., Isaacs S. N., McKenzie R., Frank M. M., Moss B. 1990; Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250:827–830 [View Article][PubMed]
    [Google Scholar]
  38. Law K. M., Smith G. L. 1992; A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J Gen Virol 73:549–557 [View Article][PubMed]
    [Google Scholar]
  39. Law M., Carter G. C., Roberts K. L., Hollinshead M., Smith G. L. 2006; Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103:5989–5994 [View Article][PubMed]
    [Google Scholar]
  40. Lee M. S., Roos J. M., McGuigan L. C., Smith K. A., Cormier N., Cohen L. K., Roberts B. E., Payne L. G. 1992; Molecular attenuation of vaccinia virus: mutant generation and animal characterization. J Virol 66:2617–2630[PubMed]
    [Google Scholar]
  41. Lin S. F., Price D. L., Chen C. H., Brader P., Li S., Gonzalez L., Zhang Q., Yu Y. A., Chen N. et al. 2008; Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. . J Clin Endocrinol Metab 93:4403–4407 [View Article][PubMed]
    [Google Scholar]
  42. Lindwasser O. W., Chaudhuri R., Bonifacino J. S. 2007; Mechanisms of CD4 downregulation by the Nef and Vpu proteins of primate immunodeficiency viruses. Curr Mol Med 7:171–184 [View Article][PubMed]
    [Google Scholar]
  43. Liszewski M. K., Leung M. K., Hauhart R., Buller R. M., Bertram P., Wang X., Rosengard A. M., Kotwal G. J., Atkinson J. P. 2006; Structure and regulatory profile of the monkeypox inhibitor of complement: comparison to homologs in vaccinia and variola and evidence for dimer formation. J Immunol 176:3725–3734[PubMed] [CrossRef]
    [Google Scholar]
  44. Liszewski M. K., Leung M. K., Hauhart R., Fang C. J., Bertram P., Atkinson J. P. 2009; Smallpox inhibitor of complement enzymes (SPICE): dissecting functional sites and abrogating activity. J Immunol 183:3150–3159 [View Article][PubMed]
    [Google Scholar]
  45. Manes N. P., Estep R. D., Mottaz H. M., Moore R. J., Clauss T. R., Monroe M. E., Du X., Adkins J. N., Wong S. W., Smith R. D. 2008; Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J Proteome Res 7:960–968 [View Article][PubMed]
    [Google Scholar]
  46. McKenzie R., Kotwal G. J., Moss B., Hammer C. H., Frank M. M. 1992; Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis 166:1245–1250 [View Article][PubMed]
    [Google Scholar]
  47. Miller C. G., Shchelkunov S. N., Kotwal G. J. 1997; The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. Virology 229:126–133 [View Article][PubMed]
    [Google Scholar]
  48. Moss B. 2006; Poxvirus entry and membrane fusion. Virology 344:48–54 [View Article][PubMed]
    [Google Scholar]
  49. Moulton E. A., Bertram P., Chen N., Buller R. M., Atkinson J. P. 2010; Ectromelia virus inhibitor of complement enzymes protects intracellular mature virus and infected cells from mouse complement. J Virol 84:9128–9139 [View Article][PubMed]
    [Google Scholar]
  50. Mullick J., Bernet J., Panse Y., Hallihosur S., Singh A. K., Sahu A. 2005; Identification of complement regulatory domains in vaccinia virus complement control protein. J Virol 79:12382–12393 [View Article][PubMed]
    [Google Scholar]
  51. Nagler F. P. O. 1942; Application of Hirst's phenomenon to the titration of vaccinia virus and vaccinia immune serum. Med J Aust 1:281–283
    [Google Scholar]
  52. Oda M. 1965; Rescue of dermovaccinia abortive infection by neurovaccinia virus in L cells. Virology 25:664–666 [View Article][PubMed]
    [Google Scholar]
  53. Oie M., Shida H., Ichihashi Y. 1990; The function of the vaccinia hemagglutinin in the proteolytic activation of infectivity. Virology 176:494–504 [View Article][PubMed]
    [Google Scholar]
  54. Payne L. G. 1992; Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. Virology 187:251–260 [View Article][PubMed]
    [Google Scholar]
  55. Payne L. G., Norrby E. 1976; Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles. J Gen Virol 32:63–72 [View Article][PubMed]
    [Google Scholar]
  56. Pruitt K. D., Tatusova T., Maglott D. R. 2007; NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:Database issueD61–D65 [View Article][PubMed]
    [Google Scholar]
  57. Pulford D. J., Gates A., Bridge S. H., Robinson J. H., Ulaeto D. 2004; Differential efficacy of vaccinia virus envelope proteins administered by DNA immunisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine 22:3358–3366 [View Article][PubMed]
    [Google Scholar]
  58. Rosengard A. M., Alonso L. C., Korb L. C., Baldwin W. M. III, Sanfilippo F., Turka L. A., Ahearn J. M. 1999; Functional characterization of soluble and membrane-bound forms of vaccinia virus complement control protein (VCP). Mol Immunol 36:685–697 [View Article][PubMed]
    [Google Scholar]
  59. Rosengard A. M., Liu Y., Nie Z., Jimenez R. 2002; Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement. Proc Natl Acad Sci U S A 99:8808–8813[PubMed] [CrossRef]
    [Google Scholar]
  60. Sahu A., Isaacs S. N., Soulika A. M., Lambris J. D. 1998; Interaction of vaccinia virus complement control protein with human complement proteins: factor I-mediated degradation of C3b to iC3b1 inactivates the alternative complement pathway. J Immunol 160:5596–5604[PubMed]
    [Google Scholar]
  61. Seki M., Oie M., Ichihashi Y., Shida H. 1990; Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 175:372–384 [View Article][PubMed]
    [Google Scholar]
  62. Senkevich T. G., Ojeda S., Townsley A., Nelson G. E., Moss B. 2005; Poxvirus multiprotein entry-fusion complex. Proc Natl Acad Sci U S A 102:18572–18577 [View Article][PubMed]
    [Google Scholar]
  63. Sfyroera G., Katragadda M., Morikis D., Isaacs S. N., Lambris J. D. 2005; Electrostatic modeling predicts the activities of orthopoxvirus complement control proteins. J Immunol 174:2143–2151[PubMed] [CrossRef]
    [Google Scholar]
  64. Shida H. 1986a; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451–462 [View Article][PubMed]
    [Google Scholar]
  65. Shida H. 1986b ). Variants of vaccinia virus hemagglutinin altered in intracellular transport. Mol Cell Biol 6:3734–3745[PubMed]
    [Google Scholar]
  66. Shida H. 1989; Vaccinia virus hemagglutinin. Subcell Biochem 15:405–440[PubMed]
    [Google Scholar]
  67. Shida H., Dales S. 1981; Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecules. Virology 111:56–72 [View Article][PubMed]
    [Google Scholar]
  68. Shida H., Matsumoto S. 1983; Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope. Cell 33:423–434 [View Article][PubMed]
    [Google Scholar]
  69. Shida H., Hinuma Y., Hatanaka M., Morita M., Kidokoro M., Suzuki K., Maruyama T., Takahashi-Nishimaki F., Sugimoto M. et al. 1988; Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. J Virol 62:4474–4480[PubMed]
    [Google Scholar]
  70. Simon K. O., Cardamone J. J. Jr, Whitaker-Dowling P. A., Youngner J. S., Widnell C. C. 1990; Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology 177:375–379 [View Article][PubMed]
    [Google Scholar]
  71. Spiro R. G. 1966; Characterization of carbohydrate units of glycoproteins. Methods Enzymol 8:26–52 [View Article]
    [Google Scholar]
  72. Thompson J. P., Turner P. C., Ali A. N., Crenshaw B. C., Moyer R. W. 1993; The effects of serpin gene mutations on the distinctive pathobiology of cowpox and rabbitpox virus following intranasal inoculation of Balb/c mice. Virology 197:328–338 [View Article][PubMed]
    [Google Scholar]
  73. Turner P. C., Moyer R. W. 1992; An orthopoxvirus serpinlike gene controls the ability of infected cells to fuse. J Virol 66:2076–2085[PubMed]
    [Google Scholar]
  74. Turner P. C., Moyer R. W. 1995; Orthopoxvirus fusion inhibitor glycoprotein SPI-3 (open reading frame K2L) contains motifs characteristic of serine proteinase inhibitors that are not required for control of cell fusion. J Virol 69:5978–5987[PubMed]
    [Google Scholar]
  75. Turner P. C., Moyer R. W. 2006; The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. Virology 347:88–99 [View Article][PubMed]
    [Google Scholar]
  76. Turner P. C., Moyer R. W. 2008; The vaccinia virus fusion inhibitor proteins SPI-3 (K2) and HA (A56) expressed by infected cells reduce the entry of superinfecting virus. Virology 380:226–233 [View Article][PubMed]
    [Google Scholar]
  77. Turner P. C., Baquero M. T., Yuan S., Thoennes S. R., Moyer R. W. 2000; The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasminogen activators and plasmin. Virology 272:267–280 [View Article][PubMed]
    [Google Scholar]
  78. Wagenaar T. R., Moss B. 2007; Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J Virol 81:6286–6293 [View Article][PubMed]
    [Google Scholar]
  79. Wagenaar T. R., Moss B. 2009; Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion. J Virol 83:1546–1554 [View Article][PubMed]
    [Google Scholar]
  80. Wagenaar T. R., Ojeda S., Moss B. 2008; Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex. J Virol 82:5153–5160 [View Article][PubMed]
    [Google Scholar]
  81. Wang Y. X., Turner P. C., Ness T. L., Moon K. B., Schoeb T. R., Moyer R. W. 2000; The cowpox virus SPI-3 and myxoma virus SERP1 serpins are not functionally interchangeable despite their similar proteinase inhibition profiles in vitro. . Virology 272:281–292 [View Article][PubMed]
    [Google Scholar]
  82. Wildum S., Schindler M., Münch J., Kirchhoff F. 2006; Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol 80:8047–8059 [View Article][PubMed]
    [Google Scholar]
  83. Worschech A., Chen N., Yu Y. A., Zhang Q., Pos Z., Weibel S., Raab V., Sabatino M., Monaco A. et al. 2009; Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics 10:301 [View Article][PubMed]
    [Google Scholar]
  84. Yu Y. A., Galanis C., Woo Y., Chen N., Zhang Q., Fong Y., Szalay A. A. 2009a; Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol Cancer Ther 8:141–151 [View Article][PubMed]
    [Google Scholar]
  85. Yu Z., Li S., Brader P., Chen N., Yu Y. A., Zhang Q., Szalay A. A., Fong Y., Wong R. J. 2009b ). Oncolytic vaccinia therapy of squamous cell carcinoma. Mol Cancer 8:45 [View Article][PubMed]
    [Google Scholar]
  86. Zhou J., Sun X. Y., Fernando G. J., Frazer I. H. 1992; The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion. Virology 189:678–686 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.030460-0
Loading
/content/journal/jgv/10.1099/vir.0.030460-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error