1887

Abstract

Human adenovirus type 53 (HAdV-53) has commonly been detected in samples from epidemic keratoconjunctivitis (EKC) patients in Japan since 1996. HAdV-53 is an intermediate virus, containing hexon-chimeric, penton base and fiber structures similar to HAdV-22 and -37, HAdV-37 and HAdV-8, respectively. HAdV-53-like intermediate strains were first isolated from EKC samples in Japan in the 1980s. Here, the complete genome sequences of three such HAdV-53-like intermediate strains (870006C, 880249C and 890357C) and four HAdV-53 strains were determined, and their relationships were analysed. The seven HAdV strains were classified into three groups, 870006C/880249C, 890357C and the four HAdV-53 strains, on the basis of phylogenetic analyses of the partial and complete genome sequences. HAdV strains within the same group showed the highest nucleotide identities (99.87–100.00 %). Like HAdV-53, the hexon loop 1 and 2 regions of 870006C, 880249C and 890357C showed the highest identity with HAdV-22. However, these strains did not show a hexon-chimeric structure similar to HAdV-22 and -37, or a penton base similar to HAdV-37. The fiber genes of 870006C and 880249C were identical to that of HAdV-37, but not HAdV-8. Thus, the three intermediate HAdVs isolated in the 1980s were similar to each other but not to HAdV-53. The recombination breakpoints were inferred by the Recombination Detection Program () using whole-genome sequences of these seven HAdV and of 12 HAdV-D strains from GenBank. HAdV-53 may have evolved from intermediate HAdVs circulating in the 1980s, and from HAdV-8, -22 and -37, by recombination of sections cut at the putative breakpoints.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030361-0
2011-06-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1251.html?itemId=/content/journal/jgv/10.1099/vir.0.030361-0&mimeType=html&fmt=ahah

References

  1. Adrian T. , Bastian B. , Benoist W. , Hierholzer J. C. , Wigand R. . ( 1985; ). Characterization of adenovirus 15/H9 intermediate strains. . Intervirology 23:, 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aoki K. , Tagawa Y. . ( 2002; ). A twenty-one year surveillance of adenoviral conjunctivitis in Sapporo, Japan. . Int Ophthalmol Clin 42:, 49–54.[PubMed] [CrossRef]
    [Google Scholar]
  3. Aoki K. , Ishiko H. , Konno T. , Shimada Y. , Hayashi A. , Kaneko H. , Ohguchi T. , Tagawa Y. , Ohno S. , Yamazaki S. . ( 2008; ). Epidemic keratoconjunctivitis due to the novel hexon-chimeric-intermediate 22,37/H8 human adenovirus. . J Clin Microbiol 46:, 3259–3269. [CrossRef] [PubMed]
    [Google Scholar]
  4. Aoki K. , Kaneko H. , Kitaichi N. , Ohguchi T. , Tagawa Y. , Ohno S. . ( 2011; ). Clinical features of adenoviral conjunctivitis at the early stage of infection. . Jpn J Ophthalmol 55:, 11–15. [CrossRef] [PubMed]
    [Google Scholar]
  5. Benko M. , Harrach B. , Both G. W. , Russell W. C. , Adair B. M. , Adam E. , de Jong J. C. , Hess M. , Johnson M. et al. ( 2005; ). Family Adenoviridae. . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 213–228. Edited by Fauquet C. M. , Mayo M. A. , Maniloff J. , Desselberger U. , Ball L. A. . . San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  6. Engelmann I. , Madisch I. , Pommer H. , Heim A. . ( 2006; ). An outbreak of epidemic keratoconjunctivitis caused by a new intermediate adenovirus 22/H8 identified by molecular typing. . Clin Infect Dis 43:, e64–e66. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Gibbs M. J. , Armstrong J. S. , Gibbs A. J. . ( 2000; ). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. . Bioinformatics 16:, 573–582. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ishiko H. , Aoki K. . ( 2009; ). Spread of epidemic keratoconjunctivitis due to a novel serotype of human adenovirus in Japan. . J Clin Microbiol 47:, 2678–2679. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ishiko H. , Shimada Y. , Konno T. , Hayashi A. , Ohguchi T. , Tagawa Y. , Aoki K. , Ohno S. , Yamazaki S. . ( 2008; ). Novel human adenovirus causing nosocomial epidemic keratoconjunctivitis. . J Clin Microbiol 46:, 2002–2008. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jones M. S. II , Harrach B. , Ganac R. D. , Gozum M. M. , Dela Cruz W. P. , Riedel B. , Pan C. , Delwart E. L. , Schnurr D. P. . ( 2007; ). New adenovirus species found in a patient presenting with gastroenteritis. . J Virol 81:, 5978–5984. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kaneko H. , Iida T. , Aoki K. , Ohno S. , Suzutani T. . ( 2005; ). Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. . J Clin Microbiol 43:, 3290–3296. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kaneko H. , Iida T. , Ishiko H. , Ohguchi T. , Ariga T. , Tagawa Y. , Aoki K. , Ohno S. , Suzutani T. . ( 2009; ). Analysis of the complete genome sequence of epidemic keratoconjunctivitis-related human adenovirus type 8, 19, 37 and a novel serotype. . J Gen Virol 90:, 1471–1476. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kaneko H. , Suzutani T. , Aoki K. , Kitaichi N. , Ishida S. , Ishiko H. , Ohashi T. , Okamoto S. , Nakagawa H. et al. ( 2011; a). Epidemiological and virological features of epidemic keratoconjunctivitis due to new human adenovirus type 54 in Japan. . Br J Ophthalmol 95:, 32–36. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kaneko H. , Aoki K. , Ohno S. , Ishiko H. , Fujimoto T. , Kikuchi M. , Harada S. , Gonzalez G. , Koyanagi K. O. et al. ( 2011; b). Complete genome analysis of a novel intertypic recombinant human adenovirus causing epidemic keratoconjunctivitis in Japan. . J Clin Microbiol 49:, 484–490. [CrossRef]
    [Google Scholar]
  16. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lole K. S. , Bollinger R. C. , Paranjape R. S. , Gadkari D. , Kulkarni S. S. , Novak N. G. , Ingersoll R. , Sheppard H. W. , Ray S. C. . ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. . J Virol 73:, 152–160.[PubMed]
    [Google Scholar]
  18. Lukashev A. N. , Ivanova O. E. , Eremeeva T. P. , Iggo R. D. . ( 2008; ). Evidence of frequent recombination among human adenoviruses. . J Gen Virol 89:, 380–388. [CrossRef] [PubMed]
    [Google Scholar]
  19. Madisch I. , Harste G. , Pommer H. , Heim A. . ( 2005; ). Phylogenetic analysis of the main neutralization and hemagglutination determinants of all human adenovirus prototypes as a basis for molecular classification and taxonomy. . J Virol 79:, 15265–15276. [CrossRef] [PubMed]
    [Google Scholar]
  20. Martin D. , Rybicki E. . ( 2000; ). rdp: detection of recombination amongst aligned sequences. . Bioinformatics 16:, 562–563. [CrossRef] [PubMed]
    [Google Scholar]
  21. Martin D. P. , Posada D. , Crandall K. A. , Williamson C. . ( 2005; a). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. . AIDS Res Hum Retroviruses 21:, 98–102. [CrossRef] [PubMed]
    [Google Scholar]
  22. Martin D. P. , Williamson C. , Posada D. . ( 2005; b). rdp2: recombination detection and analysis from sequence alignments. . Bioinformatics 21:, 260–262. [CrossRef] [PubMed]
    [Google Scholar]
  23. Noda M. , Miyamoto Y. , Ikeda Y. , Matsuishi T. , Ogino T. . ( 1991; ). Intermediate human adenovirus type 22/H10,19,37 as a new etiological agent of conjunctivitis. . J Clin Microbiol 29:, 1286–1289.[PubMed]
    [Google Scholar]
  24. Padidam M. , Sawyer S. , Fauquet C. M. . ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. . Virology 265:, 218–225. [CrossRef] [PubMed]
    [Google Scholar]
  25. Posada D. , Crandall K. A. . ( 2001; ). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. . Proc Natl Acad Sci U S A 98:, 13757–13762. [CrossRef] [PubMed]
    [Google Scholar]
  26. Robinson C. M. , Shariati F. , Gillaspy A. F. , Dyer D. W. , Chodosh J. . ( 2008; ). Genomic and bioinformatics analysis of human adenovirus type 37: new insights into corneal tropism. . BMC Genomics 9:, 213. [CrossRef] [PubMed]
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Shinagawa M. , Matsuda A. , Ishiyama T. , Goto H. , Sato G. . ( 1983; ). A rapid and simple method for preparation of adenovirus DNA from infected cells. . Microbiol Immunol 27:, 817–822.[PubMed] [CrossRef]
    [Google Scholar]
  29. Smith J. M. . ( 1992; ). Analyzing the mosaic structure of genes. . J Mol Evol 34:, 126–129. [CrossRef] [PubMed]
    [Google Scholar]
  30. Swenson P. D. , Wadell G. , Allard A. , Hierholzer J. C. . ( 2003; ). Adenoviruses. . In Manual of Clinical Microbiology, , 8th edn., vol. 2, pp. 1404–1417. Edited by Murray P. R. , Baron E. J. , Jorgensen J. H. , Pfaller M. A. , Yolken R. H. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tabbara K. F. , Omar N. , Hammouda E. , Akanuma M. , Ohguchi T. , Ariga T. , Tagawa Y. , Kitaichi N. , Ishida S. et al. ( 2010; ). Molecular epidemiology of adenoviral keratoconjunctivitis in Saudi Arabia. . Mol Vis 16:, 2132–2136.[PubMed]
    [Google Scholar]
  32. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  34. Walsh M. P. , Chintakuntlawar A. , Robinson C. M. , Madisch I. , Harrach B. , Hudson N. R. , Schnurr D. , Heim A. , Chodosh J. et al. ( 2009; ). Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. . PLoS ONE 4:, e5635. [CrossRef] [PubMed]
    [Google Scholar]
  35. Walsh M. P. , Seto J. , Jones M. S. , Chodosh J. , Xu W. , Seto D. . ( 2010; ). Computational analysis identifies human adenovirus type 55 as a re-emergent acute respiratory disease pathogen. . J Clin Microbiol 48:, 991–993. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wold W. S. M. , Horwitz M. S. . ( 2007; ). Adenoviruses. . In Fields Virology, , 5th edn., vol. 2, pp. 2395–2436. Edited by Knipe D. M. , Howley P. M. , Griffin D. E. , Lamb R. A. , Martin M. A. , Roizman B. , Straus S. E. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  37. Yang Z. , Zhu Z. , Tang L. , Wang L. , Tan X. , Yu P. , Zhang Y. , Tian X. , Wang J. et al. ( 2009; ). Genomic analyses of recombinant adenovirus type 11a in China. . J Clin Microbiol 47:, 3082–3090. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030361-0
Loading
/content/journal/jgv/10.1099/vir.0.030361-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error