1887

Abstract

Human adenovirus type 53 (HAdV-53) has commonly been detected in samples from epidemic keratoconjunctivitis (EKC) patients in Japan since 1996. HAdV-53 is an intermediate virus, containing hexon-chimeric, penton base and fiber structures similar to HAdV-22 and -37, HAdV-37 and HAdV-8, respectively. HAdV-53-like intermediate strains were first isolated from EKC samples in Japan in the 1980s. Here, the complete genome sequences of three such HAdV-53-like intermediate strains (870006C, 880249C and 890357C) and four HAdV-53 strains were determined, and their relationships were analysed. The seven HAdV strains were classified into three groups, 870006C/880249C, 890357C and the four HAdV-53 strains, on the basis of phylogenetic analyses of the partial and complete genome sequences. HAdV strains within the same group showed the highest nucleotide identities (99.87–100.00 %). Like HAdV-53, the hexon loop 1 and 2 regions of 870006C, 880249C and 890357C showed the highest identity with HAdV-22. However, these strains did not show a hexon-chimeric structure similar to HAdV-22 and -37, or a penton base similar to HAdV-37. The fiber genes of 870006C and 880249C were identical to that of HAdV-37, but not HAdV-8. Thus, the three intermediate HAdVs isolated in the 1980s were similar to each other but not to HAdV-53. The recombination breakpoints were inferred by the Recombination Detection Program () using whole-genome sequences of these seven HAdV and of 12 HAdV-D strains from GenBank. HAdV-53 may have evolved from intermediate HAdVs circulating in the 1980s, and from HAdV-8, -22 and -37, by recombination of sections cut at the putative breakpoints.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030361-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1251.html?itemId=/content/journal/jgv/10.1099/vir.0.030361-0&mimeType=html&fmt=ahah

References

  1. Adrian T., Bastian B., Benoist W., Hierholzer J. C., Wigand R. 1985; Characterization of adenovirus 15/H9 intermediate strains. Intervirology 23:15–22 [View Article][PubMed]
    [Google Scholar]
  2. Aoki K., Tagawa Y. 2002; A twenty-one year surveillance of adenoviral conjunctivitis in Sapporo, Japan. Int Ophthalmol Clin 42:49–54[PubMed] [CrossRef]
    [Google Scholar]
  3. Aoki K., Ishiko H., Konno T., Shimada Y., Hayashi A., Kaneko H., Ohguchi T., Tagawa Y., Ohno S., Yamazaki S. 2008; Epidemic keratoconjunctivitis due to the novel hexon-chimeric-intermediate 22,37/H8 human adenovirus. J Clin Microbiol 46:3259–3269 [View Article][PubMed]
    [Google Scholar]
  4. Aoki K., Kaneko H., Kitaichi N., Ohguchi T., Tagawa Y., Ohno S. 2011; Clinical features of adenoviral conjunctivitis at the early stage of infection. Jpn J Ophthalmol 55:11–15 [View Article][PubMed]
    [Google Scholar]
  5. Benko M., Harrach B., Both G. W., Russell W. C., Adair B. M., Adam E., de Jong J. C., Hess M., Johnson M. et al. 2005; Family Adenoviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp. 213–228 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  6. Engelmann I., Madisch I., Pommer H., Heim A. 2006; An outbreak of epidemic keratoconjunctivitis caused by a new intermediate adenovirus 22/H8 identified by molecular typing. Clin Infect Dis 43:e64–e66 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Gibbs M. J., Armstrong J. S., Gibbs A. J. 2000; Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582 [View Article][PubMed]
    [Google Scholar]
  9. Ishiko H., Aoki K. 2009; Spread of epidemic keratoconjunctivitis due to a novel serotype of human adenovirus in Japan. J Clin Microbiol 47:2678–2679 [View Article][PubMed]
    [Google Scholar]
  10. Ishiko H., Shimada Y., Konno T., Hayashi A., Ohguchi T., Tagawa Y., Aoki K., Ohno S., Yamazaki S. 2008; Novel human adenovirus causing nosocomial epidemic keratoconjunctivitis. J Clin Microbiol 46:2002–2008 [View Article][PubMed]
    [Google Scholar]
  11. Jones M. S. II, Harrach B., Ganac R. D., Gozum M. M., Dela Cruz W. P., Riedel B., Pan C., Delwart E. L., Schnurr D. P. 2007; New adenovirus species found in a patient presenting with gastroenteritis. J Virol 81:5978–5984 [View Article][PubMed]
    [Google Scholar]
  12. Kaneko H., Iida T., Aoki K., Ohno S., Suzutani T. 2005; Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol 43:3290–3296 [View Article][PubMed]
    [Google Scholar]
  13. Kaneko H., Iida T., Ishiko H., Ohguchi T., Ariga T., Tagawa Y., Aoki K., Ohno S., Suzutani T. 2009; Analysis of the complete genome sequence of epidemic keratoconjunctivitis-related human adenovirus type 8, 19, 37 and a novel serotype. J Gen Virol 90:1471–1476 [View Article][PubMed]
    [Google Scholar]
  14. Kaneko H., Suzutani T., Aoki K., Kitaichi N., Ishida S., Ishiko H., Ohashi T., Okamoto S., Nakagawa H. et al. 2011a). Epidemiological and virological features of epidemic keratoconjunctivitis due to new human adenovirus type 54 in Japan. Br J Ophthalmol 95:32–36 [View Article][PubMed]
    [Google Scholar]
  15. Kaneko H., Aoki K., Ohno S., Ishiko H., Fujimoto T., Kikuchi M., Harada S., Gonzalez G., Koyanagi K. O. et al. 2011b). Complete genome analysis of a novel intertypic recombinant human adenovirus causing epidemic keratoconjunctivitis in Japan. J Clin Microbiol 49:484–490 [View Article]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160[PubMed]
    [Google Scholar]
  18. Lukashev A. N., Ivanova O. E., Eremeeva T. P., Iggo R. D. 2008; Evidence of frequent recombination among human adenoviruses. J Gen Virol 89:380–388 [View Article][PubMed]
    [Google Scholar]
  19. Madisch I., Harste G., Pommer H., Heim A. 2005; Phylogenetic analysis of the main neutralization and hemagglutination determinants of all human adenovirus prototypes as a basis for molecular classification and taxonomy. J Virol 79:15265–15276 [View Article][PubMed]
    [Google Scholar]
  20. Martin D., Rybicki E. 2000; rdp: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563 [View Article][PubMed]
    [Google Scholar]
  21. Martin D. P., Posada D., Crandall K. A., Williamson C. 2005a). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102 [View Article][PubMed]
    [Google Scholar]
  22. Martin D. P., Williamson C., Posada D. 2005b). rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 [View Article][PubMed]
    [Google Scholar]
  23. Noda M., Miyamoto Y., Ikeda Y., Matsuishi T., Ogino T. 1991; Intermediate human adenovirus type 22/H10,19,37 as a new etiological agent of conjunctivitis. J Clin Microbiol 29:1286–1289[PubMed]
    [Google Scholar]
  24. Padidam M., Sawyer S., Fauquet C. M. 1999; Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225 [View Article][PubMed]
    [Google Scholar]
  25. Posada D., Crandall K. A. 2001; Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757–13762 [View Article][PubMed]
    [Google Scholar]
  26. Robinson C. M., Shariati F., Gillaspy A. F., Dyer D. W., Chodosh J. 2008; Genomic and bioinformatics analysis of human adenovirus type 37: new insights into corneal tropism. BMC Genomics 9:213 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Shinagawa M., Matsuda A., Ishiyama T., Goto H., Sato G. 1983; A rapid and simple method for preparation of adenovirus DNA from infected cells. Microbiol Immunol 27:817–822[PubMed] [CrossRef]
    [Google Scholar]
  29. Smith J. M. 1992; Analyzing the mosaic structure of genes. J Mol Evol 34:126–129 [View Article][PubMed]
    [Google Scholar]
  30. Swenson P. D., Wadell G., Allard A., Hierholzer J. C. 2003; Adenoviruses. In Manual of Clinical Microbiology, 8th edn. vol. 2 pp. 1404–1417 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Tabbara K. F., Omar N., Hammouda E., Akanuma M., Ohguchi T., Ariga T., Tagawa Y., Kitaichi N., Ishida S. et al. 2010; Molecular epidemiology of adenoviral keratoconjunctivitis in Saudi Arabia. Mol Vis 16:2132–2136[PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  34. Walsh M. P., Chintakuntlawar A., Robinson C. M., Madisch I., Harrach B., Hudson N. R., Schnurr D., Heim A., Chodosh J. et al. 2009; Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS ONE 4:e5635 [View Article][PubMed]
    [Google Scholar]
  35. Walsh M. P., Seto J., Jones M. S., Chodosh J., Xu W., Seto D. 2010; Computational analysis identifies human adenovirus type 55 as a re-emergent acute respiratory disease pathogen. J Clin Microbiol 48:991–993 [View Article][PubMed]
    [Google Scholar]
  36. Wold W. S. M., Horwitz M. S. 2007; Adenoviruses. In Fields Virology, 5th edn. vol. 2 pp. 2395–2436 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  37. Yang Z., Zhu Z., Tang L., Wang L., Tan X., Yu P., Zhang Y., Tian X., Wang J. et al. 2009; Genomic analyses of recombinant adenovirus type 11a in China. J Clin Microbiol 47:3082–3090 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030361-0
Loading
/content/journal/jgv/10.1099/vir.0.030361-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error