1887

Abstract

Natural human cytomegalovirus (CMV) infection is characterized by a strain-specific neutralizing antibody response. This is particularly relevant in clinical settings such as transplantation and pregnancy where reinfection with heterologous strains occurs and the immune system does not mount an effective response against the infecting strain due to underlying immunosuppression. There is an emerging argument that a CMV vaccine that induces high titres of cross-neutralizing antibodies will be more effective in protecting individuals from infection with antigenically different CMV strains. In addition, induction of cell-mediated immunity offers the additional advantage of targeting virus-infected cells. This study presents a novel formulation of a CMV vaccine that, by combining recombinant soluble gB protein with a Toll-like receptor 9 agonist (CpG ODN1826) and immune-stimulating complexes (AbISCO 100), was able to elicit strong polyfunctional CMV-specific cellular and cross-neutralizing humoral immune responses. These data demonstrated that prime–boost immunization of human leukocyte antigen (HLA)-A2 mice with gB protein in combination with CpG ODN1826 and AbISCO 100 induced long-lasting CMV-specific CD4 and CD8 T-cell and humoral responses. Furthermore, these responses neutralized infection with multiple strains of CMV expressing different gB genotypes and afforded protection against challenge with recombinant vaccinia virus encoding the gB protein. These observations argue that this novel vaccine strategy, if applied to humans, should facilitate the generation of a robust, pluripotent immune response, which may be more effective in preventing infection with multiple strains of CMV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.029413-0
2011-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1021.html?itemId=/content/journal/jgv/10.1099/vir.0.029413-0&mimeType=html&fmt=ahah

References

  1. Almeida J. R. , Price D. A. , Papagno L. , Arkoub Z. A. , Sauce D. , Bornstein E. , Asher T. E. , Samri A. , Schnuriger A. et al. ( 2007; ). Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. . J Exp Med 204:, 2473–2485. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arvin A. M. , Fast P. , Myers M. , Plotkin S. , Rabinovich R. . ( 2004; ). Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. . Clin Infect Dis 39:, 233–239. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barry A. P. , Silvestri G. , Safrit J. T. , Sumpter B. , Kozyr N. , McClure H. M. , Staprans S. I. , Feinberg M. B. . ( 2007; ). Depletion of CD8+ cells in sooty mangabey monkeys naturally infected with simian immunodeficiency virus reveals limited role for immune control of virus replication in a natural host species. . J Immunol 178:, 8002–8012.[PubMed] [CrossRef]
    [Google Scholar]
  4. Boppana S. B. , Fowler K. B. , Britt W. J. , Stagno S. , Pass R. F. . ( 1999; ). Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. . Pediatrics 104:, 55–60. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boppana S. B. , Rivera L. B. , Fowler K. B. , Mach M. , Britt W. J. . ( 2001; ). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. . N Engl J Med 344:, 1366–1371. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cousens L. P. , Orange J. S. , Biron C. A. . ( 1995; ). Endogenous IL-2 contributes to T cell expansion and IFN-γ production during lymphocytic choriomeningitis virus infection. . J Immunol 155:, 5690–5699.[PubMed]
    [Google Scholar]
  7. Crough T. , Khanna R. . ( 2009; ). Immunobiology of human cytomegalovirus: from bench to bedside. . Clin Microbiol Rev 22:, 76–98. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cui X. , Meza B. P. , Adler S. P. , McVoy M. A. . ( 2008; ). Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. . Vaccine 26:, 5760–5766. [CrossRef] [PubMed]
    [Google Scholar]
  9. Engelhard V. H. , Lacy E. , Ridge J. P. . ( 1991; ). Influenza A-specific, HLA-A2.1-restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein. . J Immunol 146:, 1226–1232.[PubMed]
    [Google Scholar]
  10. Flynn J. L. , Goldstein M. M. , Chan J. , Triebold K. J. , Pfeffer K. , Lowenstein C. J. , Schreiber R. , Mak T. W. , Bloom B. R. . ( 1995; ). Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. . Immunity 2:, 561–572. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gandhi M. K. , Khanna R. . ( 2004; ). Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. . Lancet Infect Dis 4:, 725–738. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gerna G. , Percivalle E. , Baldanti F. , Revello M. G. . ( 2002; ). Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. . J Med Virol 66:, 335–339. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hahn G. , Revello M. G. , Patrone M. , Percivalle E. , Campanini G. , Sarasini A. , Wagner M. , Gallina A. , Milanesi G. et al. ( 2004; ). Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. . J Virol 78:, 10023–10033. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hansen S. G. , Powers C. J. , Richards R. , Ventura A. B. , Ford J. C. , Siess D. , Axthelm M. K. , Nelson J. A. , Jarvis M. A. et al. ( 2010; ). Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. . Science 328:, 102–106. [CrossRef] [PubMed]
    [Google Scholar]
  15. Harari A. , Zimmerli S. C. , Pantaleo G. . ( 2004; ). Cytomegalovirus (CMV)-specific cellular immune responses. . Hum Immunol 65:, 500–506. [CrossRef] [PubMed]
    [Google Scholar]
  16. Harari A. , Cellerai C. , Enders F. B. , Köstler J. , Codarri L. , Tapia G. , Boyman O. , Castro E. , Gaudieri S. et al. ( 2007; ). Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. . Proc Natl Acad Sci U S A 104:, 16233–16238. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ishibashi K. , Tokumoto T. , Tanabe K. , Shirakawa H. , Hashimoto K. , Kushida N. , Yanagida T. , Inoue N. , Yamaguchi O. et al. ( 2007; ). Association of the outcome of renal transplantation with antibody response to cytomegalovirus strain-specific glycoprotein H epitopes. . Clin Infect Dis 45:, 60–67. [CrossRef] [PubMed]
    [Google Scholar]
  18. Klein M. , Schoppel K. , Amvrossiadis N. , Mach M. . ( 1999; ). Strain-specific neutralization of human cytomegalovirus isolates by human sera. . J Virol 73:, 878–886.[PubMed]
    [Google Scholar]
  19. Kuprash D. V. , Alimzhanov M. B. , Tumanov A. V. , Anderson A. O. , Pfeffer K. , Nedospasov S. A. . ( 1999; ). TNF and lymphotoxin β cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. . J Immunol 163:, 6575–6580.[PubMed]
    [Google Scholar]
  20. Marshall B. C. , Adler S. P. . ( 2003; ). Avidity maturation following immunization with two human cytomegalovirus (CMV) vaccines: a live attenuated vaccine (Towne) and a recombinant glycoprotein vaccine (gB/MF59). . Viral Immunol 16:, 491–500. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mussi-Pinhata M. M. , Yamamoto A. Y. , Moura Brito R. M. , de Lima Isaac M. , de Carvalho Oliveira P. F. , Boppana S. , Britt W. J. . ( 2009; ). Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. . Clin Infect Dis 49:, 522–528. [CrossRef] [PubMed]
    [Google Scholar]
  22. Newberg M. H. , Ridge J. P. , Vining D. R. , Salter R. D. , Engelhard V. H. . ( 1992; ). Species specificity in the interaction of CD8 with the α3 domain of MHC class I molecules. . J Immunol 149:, 136–142.[PubMed]
    [Google Scholar]
  23. Nogueira E. , Ozaki K. S. , Tomiyama H. , Câmara N. O. , Granato C. F. . ( 2009; ). Clinical correlations of human cytomegalovirus strains and viral load in kidney transplant recipients. . Int Immunopharmacol 9:, 26–31. [CrossRef] [PubMed]
    [Google Scholar]
  24. Pass R. F. . ( 2009; ). Development and evidence for efficacy of CMV glycoprotein B vaccine with MF59 adjuvant. . J Clin Virol 46: Suppl. 4 S73–S76. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pass R. F. , Zhang C. , Evans A. , Simpson T. , Andrews W. , Huang M. L. , Corey L. , Hill J. , Davis E. et al. ( 2009; ). Vaccine prevention of maternal cytomegalovirus infection. . N Engl J Med 360:, 1191–1199. [CrossRef] [PubMed]
    [Google Scholar]
  26. Percivalle E. , Revello M. G. , Vago L. , Morini F. , Gerna G. . ( 1993; ). Circulating endothelial giant cells permissive for human cytomegalovirus (HCMV) are detected in disseminated HCMV infections with organ involvement. . J Clin Invest 92:, 663–670. [CrossRef] [PubMed]
    [Google Scholar]
  27. Precopio M. L. , Betts M. R. , Parrino J. , Price D. A. , Gostick E. , Ambrozak D. R. , Asher T. E. , Douek D. C. , Harari A. et al. ( 2007; ). Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. . J Exp Med 204:, 1405–1416. [CrossRef] [PubMed]
    [Google Scholar]
  28. Reusser P. , Riddell S. R. , Meyers J. D. , Greenberg P. D. . ( 1991; ). Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. . Blood 78:, 1373–1380.[PubMed]
    [Google Scholar]
  29. Riegler S. , Hebart H. , Einsele H. , Brossart P. , Jahn G. , Sinzger C. . ( 2000; ). Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. . J Gen Virol 81:, 393–399.[PubMed]
    [Google Scholar]
  30. Ross S. A. , Arora N. , Novak Z. , Fowler K. B. , Britt W. J. , Boppana S. B. . ( 2010; ). Cytomegalovirus reinfections in healthy seroimmune women. . J Infect Dis 201:, 386–389. [CrossRef] [PubMed]
    [Google Scholar]
  31. Roubalová K. , Strunecký O. , Zufanová S. , Procházka B. , Vitek A. . ( 2010; ). [Genotyping of viral glycoprotein B (gB) in hematopoietic stem cell transplant recipients with active cytomegalovirus infection: analysis of the impact of gB genotypes on the patients’ outcome]. . Epidemiol Mikrobiol Imunol 59:, 92–99 (in Czech).[PubMed]
    [Google Scholar]
  32. Singh J. , Compton T. . ( 2000; ). Characterization of a panel of insertion mutants in human cytomegalovirus glycoprotein B. . J Virol 74:, 1383–1392. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sinzger C. , Grefte A. , Plachter B. , Gouw A. S. , The T. H. , Jahn G. . ( 1995; ). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. . J Gen Virol 76:, 741–750. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sinzger C. , Schmidt K. , Knapp J. , Kahl M. , Beck R. , Waldman J. , Hebart H. , Einsele H. , Jahn G. . ( 1999; ). Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. . J Gen Virol 80:, 2867–2877.[PubMed]
    [Google Scholar]
  35. Smith K. A. . ( 1988; ). Interleukin-2: inception, impact, and implications. . Science 240:, 1169–1176. [CrossRef] [PubMed]
    [Google Scholar]
  36. Suresh M. , Gao X. , Fischer C. , Miller N. E. , Tewari K. . ( 2004; ). Dissection of antiviral and immune regulatory functions of tumor necrosis factor receptors in a chronic lymphocytic choriomeningitis virus infection. . J Virol 78:, 3906–3918. [CrossRef] [PubMed]
    [Google Scholar]
  37. Urban M. , Britt W. , Mach M. . ( 1992; ). The dominant linear neutralizing antibody-binding site of glycoprotein gp86 of human cytomegalovirus is strain specific. . J Virol 66:, 1303–1311.[PubMed]
    [Google Scholar]
  38. Wang Z. , La Rosa C. , Maas R. , Ly H. , Brewer J. , Mekhoubad S. , Daftarian P. , Longmate J. , Britt W. J. , Diamond D. J. . ( 2004; ). Recombinant modified vaccinia virus Ankara expressing a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against multiple strains of human cytomegalovirus. . J Virol 78:, 3965–3976. [CrossRef] [PubMed]
    [Google Scholar]
  39. Willerford D. M. , Chen J. , Ferry J. A. , Davidson L. , Ma A. , Alt F. W. . ( 1995; ). Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. . Immunity 3:, 521–530. [CrossRef] [PubMed]
    [Google Scholar]
  40. Zhong L. , Peng X. , Hidalgo G. E. , Doherty D. E. , Stromberg A. J. , Hirschowitz E. A. . ( 2004; ). Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. . Proteomics 4:, 1216–1225. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhong J. , Rist M. , Cooper L. , Smith C. , Khanna R. . ( 2008; ). Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus. . PLoS ONE 3:, e3256. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.029413-0
Loading
/content/journal/jgv/10.1099/vir.0.029413-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error