1887

Abstract

Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus in the family . Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.029306-0
2011-05-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1205.html?itemId=/content/journal/jgv/10.1099/vir.0.029306-0&mimeType=html&fmt=ahah

References

  1. Biacchesi S. , Skiadopoulos M. H. , Yang L. , Lamirande E. W. , Tran K. C. , Murphy B. R. , Collins P. L. , Buchholz U. J. . ( 2004; ). Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. . J Virol 78:, 12877–12887. [CrossRef] [PubMed]
    [Google Scholar]
  2. Biacchesi S. , Pham Q. N. , Skiadopoulos M. H. , Murphy B. R. , Collins P. L. , Buchholz U. J. . ( 2005; ). Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. . J Virol 79:, 12608–12613. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bruce E. A. , Digard P. , Stuart A. D. . ( 2010; ). The Rab11 pathway is required for influenza A virus budding and filament formation. . J Virol 84:, 5848–5859. [CrossRef] [PubMed]
    [Google Scholar]
  4. Catelli E. , Cecchinato M. , Savage C. E. , Jones R. C. , Naylor C. J. . ( 2006; ). Demonstration of loss of attenuation and extended field persistence of a live avian metapneumovirus vaccine. . Vaccine 24:, 6476–6482. [CrossRef] [PubMed]
    [Google Scholar]
  5. Catelli E. , Lupini C. , Cecchinato M. , Ricchizzi E. , Brown P. , Naylor C. J. . ( 2010; ). Field avian metapneumovirus evolution avoiding vaccine induced immunity. . Vaccine 28:, 916–921. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen B. J. , Lamb R. A. . ( 2008; ). Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?. Virology 372:, 221–232. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen B. J. , Leser G. P. , Morita E. , Lamb R. A. . ( 2007; ). Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. . J Virol 81:, 7111–7123. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ciancanelli M. J. , Basler C. F. . ( 2006; ). Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. . J Virol 80:, 12070–12078. [CrossRef] [PubMed]
    [Google Scholar]
  9. Coronel E. C. , Murti K. G. , Takimoto T. , Portner A. . ( 1999; ). Human parainfluenza virus type 1 matrix and nucleoprotein genes transiently expressed in mammalian cells induce the release of virus-like particles containing nucleocapsid-like structures. . J Virol 73:, 7035–7038.[PubMed]
    [Google Scholar]
  10. de Graaf M. , Osterhaus A. D. , Fouchier R. A. , Holmes E. C. . ( 2008; ). Evolutionary dynamics of human and avian metapneumoviruses. . J Gen Virol 89:, 2933–2942. [CrossRef] [PubMed]
    [Google Scholar]
  11. Demirov D. G. , Freed E. O. . ( 2004; ). Retrovirus budding. . Virus Res 106:, 87–102. [CrossRef] [PubMed]
    [Google Scholar]
  12. Demirov D. G. , Ono A. , Orenstein J. M. , Freed E. O. . ( 2002; ). Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. . Proc Natl Acad Sci U S A 99:, 955–960. [CrossRef] [PubMed]
    [Google Scholar]
  13. Easton A. J. , Domachowske J. B. , Rosenberg H. F. . ( 2004; ). Animal pneumoviruses: molecular genetics and pathogenesis. . Clin Microbiol Rev 17:, 390–412. [CrossRef] [PubMed]
    [Google Scholar]
  14. Freed E. O. . ( 2002; ). Viral late domains. . J Virol 76:, 4679–4687. [CrossRef] [PubMed]
    [Google Scholar]
  15. Garrus J. E. , von Schwedler U. K. , Pornillos O. W. , Morham S. G. , Zavitz K. H. , Wang H. E. , Wettstein D. A. , Stray K. M. , Côté M. , Rich R. L. . ( 2001; ). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. . Cell 107:, 55–65. [CrossRef] [PubMed]
    [Google Scholar]
  16. Goila-Gaur R. , Demirov D. G. , Orenstein J. M. , Ono A. , Freed E. O. . ( 2003; ). Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. . J Virol 77:, 6507–6519. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gosselin-Grenet A. S. , Marq J. B. , Abrami L. , Garcin D. , Roux L. . ( 2007; ). Sendai virus budding in the course of an infection does not require Alix and VPS4A host factors. . Virology 365:, 101–112. [CrossRef] [PubMed]
    [Google Scholar]
  18. Govindarajan D. , Samal S. K. . ( 2004; ). Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus. . Virus Res 105:, 59–66. [CrossRef] [PubMed]
    [Google Scholar]
  19. Govindarajan D. , Samal S. K. . ( 2005; ). Analysis of the complete genome sequence of avian metapneumovirus subgroup C indicates that it possesses the longest genome among metapneumoviruses. . Virus Genes 30:, 331–333. [CrossRef] [PubMed]
    [Google Scholar]
  20. Irie T. , Shimazu Y. , Yoshida T. , Sakaguchi T. . ( 2007; ). The YLDL sequence within Sendai virus M protein is critical for budding of virus-like particles and interacts with Alix/AIP1 independently of C protein. . J Virol 81:, 2263–2273. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jin J. , Sturgeon T. , Chen C. , Watkins S. C. , Weisz O. A. , Montelaro R. C. . ( 2007; ). Distinct intracellular trafficking of equine infectious anemia virus and human immunodeficiency virus type 1 Gag during viral assembly and budding revealed by bimolecular fluorescence complementation assays. . J Virol 81:, 11226–11235. [CrossRef] [PubMed]
    [Google Scholar]
  22. Knipe, D. M. , Howley, P. M., Griffin, D. E., Lamb, R. A., Martin, M. A., Roizman. B. & Straus, S. E. (editors) (2001). Fields Virology. Philadelphia, PA: Lippincott Williams & Wilkins.
  23. Lee S. , Joshi A. , Nagashima K. , Freed E. O. , Hurley J. H. . ( 2007; ). Structural basis for viral late-domain binding to Alix. . Nat Struct Mol Biol 14:, 194–199. [CrossRef] [PubMed]
    [Google Scholar]
  24. Li F. , Chen C. , Puffer B. A. , Montelaro R. C. . ( 2002; ). Functional replacement and positional dependence of homologous and heterologous L domains in equine infectious anemia virus replication. . J Virol 76:, 1569–1577. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li M. , Schmitt P. T. , Li Z. , McCrory T. S. , He B. , Schmitt A. P. . ( 2009; ). Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. . J Virol 83:, 7261–7272. [CrossRef] [PubMed]
    [Google Scholar]
  26. Luttge B. G. , Shehu-Xhilaga M. , Demirov D. G. , Adamson C. S. , Soheilian F. , Nagashima K. , Stephen A. G. , Fisher R. J. , Freed E. O. . ( 2008; ). Molecular characterization of feline immunodeficiency virus budding. . J Virol 82:, 2106–2119. [CrossRef] [PubMed]
    [Google Scholar]
  27. Medina G. , Zhang Y. , Tang Y. , Gottwein E. , Vana M. L. , Bouamr F. , Leis J. , Carter C. A. . ( 2005; ). The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101. . Traffic 6:, 880–894. [CrossRef] [PubMed]
    [Google Scholar]
  28. Morita E. , Sundquist W. I. . ( 2004; ). Retrovirus budding. . Annu Rev Cell Dev Biol 20:, 395–425. [CrossRef] [PubMed]
    [Google Scholar]
  29. Munir S. , Kapur V. . ( 2003; ). Regulation of host cell transcriptional physiology by the avian pneumovirus provides key insights into host-pathogen interactions. . J Virol 77:, 4899–4910. [CrossRef] [PubMed]
    [Google Scholar]
  30. Munshi U. M. , Kim J. , Nagashima K. , Hurley J. H. , Freed E. O. . ( 2007; ). An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. . J Biol Chem 282:, 3847–3855. [CrossRef] [PubMed]
    [Google Scholar]
  31. Naylor C. J. , Brown P. A. , Edworthy N. , Ling R. , Jones R. C. , Savage C. E. , Easton A. J. . ( 2004; ). Development of a reverse-genetics system for avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability. . J Gen Virol 85:, 3219–3227. [CrossRef] [PubMed]
    [Google Scholar]
  32. Naylor C. J. , Ling R. , Edworthy N. , Savage C. E. , Easton A. J. . ( 2007; ). Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates. . J Gen Virol 88:, 1767–1775. [CrossRef] [PubMed]
    [Google Scholar]
  33. Niwa H. , Yamamura K. , Miyazaki J. . ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. . Gene 108:, 193–199. [CrossRef] [PubMed]
    [Google Scholar]
  34. Njenga M. K. , Lwamba H. M. , Seal B. S. . ( 2003; ). Metapneumoviruses in birds and humans. . Virus Res 91:, 163–169. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pantua H. D. , McGinnes L. W. , Peeples M. E. , Morrison T. G. . ( 2006; ). Requirements for the assembly and release of Newcastle disease virus-like particles. . J Virol 80:, 11062–11073. [CrossRef] [PubMed]
    [Google Scholar]
  36. Patch J. R. , Crameri G. , Wang L. F. , Eaton B. T. , Broder C. C. . ( 2007; ). Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. . Virol J 4:, 1. [CrossRef] [PubMed]
    [Google Scholar]
  37. Patch J. R. , Han Z. , McCarthy S. E. , Yan L. , Wang L. F. , Harty R. N. , Broder C. C. . ( 2008; ). The YPLGVG sequence of the Nipah virus matrix protein is required for budding. . Virol J 5:, 137. [CrossRef] [PubMed]
    [Google Scholar]
  38. Schmitt A. P. , Leser G. P. , Waning D. L. , Lamb R. A. . ( 2002; ). Requirements for budding of paramyxovirus simian virus 5 virus-like particles. . J Virol 76:, 3952–3964. [CrossRef] [PubMed]
    [Google Scholar]
  39. Schmitt A. P. , Leser G. P. , Morita E. , Sundquist W. I. , Lamb R. A. . ( 2005; ). Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. . J Virol 79:, 2988–2997. [CrossRef] [PubMed]
    [Google Scholar]
  40. Shehu-Xhilaga M. , Ablan S. , Demirov D. G. , Chen C. , Montelaro R. C. , Freed E. O. . ( 2004; ). Late domain-dependent inhibition of equine infectious anemia virus budding. . J Virol 78:, 724–732. [CrossRef] [PubMed]
    [Google Scholar]
  41. Takimoto T. , Portner A. . ( 2004; ). Molecular mechanism of paramyxovirus budding. . Virus Res 106:, 133–145. [CrossRef] [PubMed]
    [Google Scholar]
  42. Taylor G. M. , Hanson P. I. , Kielian M. . ( 2007; ). Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding. . J Virol 81:, 13631–13639. [CrossRef] [PubMed]
    [Google Scholar]
  43. Toquin D. , de Boisseson C. , Beven V. , Senne D. A. , Eterradossi N. . ( 2003; ). Subgroup C avian metapneumovirus (MPV) and the recently isolated human MPV exhibit a common organization but have extensive sequence divergence in their putative SH and G genes. . J Gen Virol 84:, 2169–2178. [CrossRef] [PubMed]
    [Google Scholar]
  44. Toquin D. , Guionie O. , Jestin V. , Zwingelstein F. , Allee C. , Eterradossi N. . ( 2006; ). European and American subgroup C isolates of avian metapneumovirus belong to different genetic lineages. . Virus Genes 32:, 97–103. [CrossRef] [PubMed]
    [Google Scholar]
  45. Utley T. J. , Ducharme N. A. , Varthakavi V. , Shepherd B. E. , Santangelo P. J. , Lindquist M. E. , Goldenring J. R. , Crowe J. E. Jr . ( 2008; ). Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. . Proc Natl Acad Sci U S A 105:, 10209–10214. [CrossRef] [PubMed]
    [Google Scholar]
  46. van den Hoogen B. G. , de Jong J. C. , Groen J. , Kuiken T. , de Groot R. , Fouchier R. A. , Osterhaus A. D. . ( 2001; ). A newly discovered human pneumovirus isolated from young children with respiratory tract disease. . Nat Med 7:, 719–724. [CrossRef] [PubMed]
    [Google Scholar]
  47. van den Hoogen B. G. , Bestebroer T. M. , Osterhaus A. D. , Fouchier R. A. . ( 2002; ). Analysis of the genomic sequence of a human metapneumovirus. . Virology 295:, 119–132. [CrossRef] [PubMed]
    [Google Scholar]
  48. Velayudhan B. T. , McComb B. , Bennett R. S. , Lopes V. C. , Shaw D. , Halvorson D. A. , Nagaraja K. V. . ( 2005; ). Emergence of a virulent type C avian metapneumovirus in turkeys in Minnesota. . Avian Dis 49:, 520–526. [CrossRef] [PubMed]
    [Google Scholar]
  49. Velayudhan B. T. , Nagaraja K. V. , Thachil A. J. , Shaw D. P. , Gray G. C. , Halvorson D. A. . ( 2006; ). Human metapneumovirus in turkey poults. . Emerg Infect Dis 12:, 1853–1859.[PubMed] [CrossRef]
    [Google Scholar]
  50. Velayudhan B. T. , Noll S. L. , Thachil A. J. , Halvorson D. A. , Shaw D. P. , Goyal S. M. , Nagaraja K. V. . ( 2008; ). Comparative pathogenicity of early and recent isolates of avian metapneumovirus subtype C in turkeys. . Can J Vet Res 72:, 371–375.[PubMed]
    [Google Scholar]
  51. Wang D. , Harmon A. , Jin J. , Francis D. H. , Christopher-Hennings J. , Nelson E. , Montelaro R. C. , Li F. . ( 2010; a). The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza A virus to bud into virus-like particles. . J Virol 84:, 4673–4681. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wang Y. E. , Park A. , Lake M. , Pentecost M. , Torres B. , Yun T. E. , Wolf M. C. , Holbrook M. R. , Freiberg A. N. , Lee B. . ( 2010; b). Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. . PLoS Pathog 6:, e1001186. [CrossRef] [PubMed]
    [Google Scholar]
  53. Yu Q. , Estevez C. N. , Kapczynski D. R. . ( 2006; ). Production and characterization of monoclonal antibodies that react to the nucleocapsid protein of avian metapneumovirus subtype C. . Avian Dis 50:, 419–424. [CrossRef] [PubMed]
    [Google Scholar]
  54. Yu Q. , Estevez C. , Song M. , Kapczynski D. , Zsak L. . ( 2010; ). Generation and biological assessment of recombinant avian metapneumovirus subgroup C (AMPV-C) viruses containing different length of the G gene. . Virus Res 147:, 182–188. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.029306-0
Loading
/content/journal/jgv/10.1099/vir.0.029306-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error