1887

Abstract

Host factors interacting with the dengue virus (DENV) 3′ UTR are involved in virus replication, but their roles remain poorly understood. We used RNA affinity capture and mass spectrometry to identify p100 as a host cellular protein associated with the DENV 3′ UTR. By using RNA immunoprecipitation and confocal immunofluorescence analysis we demonstrated an interaction between p100 and the 3′ UTR in DENV-infected cells. We identified the A4 region (the extensive stem–loop structure at the 3′ end) as the binding site of p100 by studying deletion mutants. p100 knockdown specifically reduced the levels of viral RNA and viral protein in DENV-infected cells. Furthermore, downregulation of p100 reduced the expression of a heterologously expressed luciferase–3′ UTR(DENV) mRNA in an A4-dependent manner, confirming the binding data and the effects of p100 knockdown on viral replication. These results provide evidence that p100 interacts with the 3′ UTR of DENV and is required for normal DENV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.028597-0
2011-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/4/796.html?itemId=/content/journal/jgv/10.1099/vir.0.028597-0&mimeType=html&fmt=ahah

References

  1. Agis-Juárez, R. A., Galván, I., Medina, F., Daikoku, T., Padmanabhan, R., Ludert, J. E. & del Angel, R. M. ( 2009; ). Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol 90, 2893–2901. [CrossRef]
    [Google Scholar]
  2. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnik, A. V. ( 2005; ). Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212. [CrossRef]
    [Google Scholar]
  3. Anwar, A., Leong, K. M., Ng, M. L., Chu, J. J. & Garcia-Blanco, M. A. ( 2009; ). The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284, 17021–17029. [CrossRef]
    [Google Scholar]
  4. Bartenschlager, R. & Miller, S. ( 2008; ). Molecular aspects of Dengue virus replication. Future Microbiol 3, 155–165. [CrossRef]
    [Google Scholar]
  5. Chavez-Salinas, S., Ceballos-Olvera, I., Reyes-Del Valle, J., Medina, F. & Del Angel, R. M. ( 2008; ). Heat shock effect upon dengue virus replication into U937 cells. Virus Res 138, 111–118. [CrossRef]
    [Google Scholar]
  6. De Nova-Ocampo, M., Villegas-Sepúlveda, N. & del Angel, R. M. ( 2002; ). Translation elongation factor-1α, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295, 337–347. [CrossRef]
    [Google Scholar]
  7. Emara, M. M. & Brinton, M. A. ( 2007; ). Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A 104, 9041–9046. [CrossRef]
    [Google Scholar]
  8. Fink, J., Gu, F., Ling, L., Tolfvenstam, T., Olfat, F., Chin, K. C., Aw, P., George, J., Kuznetsov, V. A. & other authors ( 2007; ). Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1, e86, [CrossRef]
    [Google Scholar]
  9. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41. [CrossRef]
    [Google Scholar]
  10. Halstead, S. B. ( 2007; ). Dengue. Lancet 370, 1644–1652. [CrossRef]
    [Google Scholar]
  11. Harris, D., Zhang, Z., Chaubey, B. & Pandey, V. N. ( 2006; ). Identification of cellular factors associated with the 3′-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics 5, 1006–1018. [CrossRef]
    [Google Scholar]
  12. Ho, J., Kong, J. W., Choong, L. Y., Loh, M. C., Toy, W., Chong, P. K., Wong, C. H., Wong, C. Y., Shah, N. & Lim, Y. P. ( 2009; ). Novel breast cancer metastasis-associated proteins. J Proteome Res 8, 583–594. [CrossRef]
    [Google Scholar]
  13. Holden, K. L. & Harris, E. ( 2004; ). Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329, 119–133. [CrossRef]
    [Google Scholar]
  14. Jiang, L., Yao, H., Duan, X., Lu, X. & Liu, Y. ( 2009; ). Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385, 187–192. [CrossRef]
    [Google Scholar]
  15. Khromykh, A. A., Meka, H., Guyatt, K. J. & Westaway, E. G. ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75, 6719–6728. [CrossRef]
    [Google Scholar]
  16. Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K. M., Moreno, G. T. & Brinton, M. A. ( 2002; ). Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 76, 11989–12000. [CrossRef]
    [Google Scholar]
  17. Li, C. L., Yang, W. Z., Chen, Y. P. & Yuan, H. S. ( 2008; ). Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Res 36, 3579–3589. [CrossRef]
    [Google Scholar]
  18. Lodeiro, M. F., Filomatori, C. V. & Gamarnik, A. V. ( 2009; ). Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83, 993–1008. [CrossRef]
    [Google Scholar]
  19. Nomaguchi, M., Ackermann, M., Yon, C., You, S. & Padmanbhan, R. ( 2003; ). De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77, 8831–8842. [CrossRef]
    [Google Scholar]
  20. Pache, L., König, R. & Chanda, S. K. ( 2011; ). Identifying HIV-1 host cell factors by genome-scale RNAi screening. Methods Enzymol 53(1), 3–12.
    [Google Scholar]
  21. Pang, X., Zhang, M. & Dayton, A. I. ( 2001; ). Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol 1, 18, [CrossRef]
    [Google Scholar]
  22. Paranjape, S. M. & Harris, E. ( 2007; ). Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282, 30497–30508. [CrossRef]
    [Google Scholar]
  23. Paranjape, S. M. & Harris, E. ( 2010; ). Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338, 15–34.
    [Google Scholar]
  24. Paukku, K., Kalkkinen, N., Silvennoinen, O., Kontula, K. K. & Lehtonen, J. Y. ( 2008; ). p100 increases AT1R expression through interaction with AT1R 3′-UTR. Nucleic Acids Res 36, 4474–4487. [CrossRef]
    [Google Scholar]
  25. Polacek, C., Friebe, P. & Harris, E. ( 2009; ). Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90, 687–692. [CrossRef]
    [Google Scholar]
  26. Polo, S., Ketner, G., Levis, R. & Falgout, B. ( 1997; ). Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71, 5366–5374.
    [Google Scholar]
  27. Pullmann, R., Jr, Abdelmohsen, K., Lal, A., Martindale, J. L., Ladner, R. D. & Gorospe, M. ( 2006; ). Differential stability of thymidylate synthase 3′-untranslated region polymorphic variants regulated by AUF1. J Biol Chem 281, 23456–23463. [CrossRef]
    [Google Scholar]
  28. Rodenhuis-Zybert, I. A., Wilschut, J. & Smit, J. M. ( 2010; ). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773–2786. [CrossRef]
    [Google Scholar]
  29. Rojas Mazzei, A. ( 1998; ). Molecular biology of dengue virus. Acta Cient Venez 49 (Suppl. 1), 2–7. [Article in Spanish]
    [Google Scholar]
  30. Sessions, O. M., Barrows, N. J., Souza-Neto, J. A., Robinson, T. J., Hershey, C. L., Rodgers, M. A., Ramirez, J. L., Dimopoulos, G., Yang, P. L. & other authors ( 2009; ). Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050. [CrossRef]
    [Google Scholar]
  31. Shaw, N., Zhao, M., Cheng, C., Xu, H., Saarikettu, J., Li, Y., Da, Y., Yao, Z., Silvennoinen, O. & other authors ( 2007; ). The multifunctional human p100 protein ‘hooks' methylated ligands. Nat Struct Mol Biol 14, 779–784. [CrossRef]
    [Google Scholar]
  32. Spear, A., Sharma, N. & Flanegan, J. B. ( 2008; ). Protein–RNA tethering: the role of poly(C) binding protein 2 in poliovirus RNA replication. Virology 374, 280–291. [CrossRef]
    [Google Scholar]
  33. Tomlinson, S. M., Malmstrom, R. D., Russo, A., Mueller, N., Pang, Y. P. & Watowich, S. J. ( 2009; ). Structure-based discovery of dengue virus protease inhibitors. Antiviral Res 82, 110–114. [CrossRef]
    [Google Scholar]
  34. Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G. & Kieff, E. ( 1995; ). The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15, 4735–4744.
    [Google Scholar]
  35. Tsuchiya, N., Ochiai, M., Nakashima, K., Ubagai, T., Sugimura, T. & Nakagama, H. ( 2007; ). SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res 67, 9568–9576. [CrossRef]
    [Google Scholar]
  36. Tsujimura, A., Fujita, K., Komori, K., Tanjapatkul, P., Miyagawa, Y., Takada, S., Matsumiya, K., Sada, M., Katsuyama, Y. & other authors ( 2006; ). Associations of homologous RNA-binding motif gene on the X chromosome (RBMX) and its like sequence on chromosome 9 (RBMXL9) with non-obstructive azoospermia. Asian J Androl 8, 213–218. [CrossRef]
    [Google Scholar]
  37. Wang, Q. Y., Patel, S. J., Vangrevelinghe, E., Xu, H. Y., Rao, R., Jaber, D., Schul, W., Gu, F., Heudi, O. & other authors ( 2009; ). A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 53, 1823–1831. [CrossRef]
    [Google Scholar]
  38. Weinlich, S., Hüttelmaier, S., Schierhorn, A., Behrens, S. E., Ostareck-Lederer, A. & Ostareck, D. H. ( 2009; ). IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3'UTR. RNA 15, 1528–1542. [CrossRef]
    [Google Scholar]
  39. Wiwanitkit, V. ( 2010; ). Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther 8, 841–845. [CrossRef]
    [Google Scholar]
  40. Wollerton, M. C., Gooding, C., Robinson, F., Brown, E. C., Jackson, R. J. & Smith, C. W. ( 2001; ). Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 7, 819–832. [CrossRef]
    [Google Scholar]
  41. Yang, J., Välineva, T., Hong, J., Bu, T., Yao, Z., Jensen, O. N., Frilander, M. J. & Silvennoinen, O. ( 2007; ). Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Res 35, 4485–4494. [CrossRef]
    [Google Scholar]
  42. Yocupicio-Monroy, R. M., Medina, F., Reyes-del Valle, J. & del Angel, R. M. ( 2003; ). Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3′ untranslated region RNA. J Virol 77, 3067–3076. [CrossRef]
    [Google Scholar]
  43. Yocupicio-Monroy, M., Padmanabhan, R., Medina, F. & del Angel, R. M. ( 2007; ). Mosquito La protein binds to the 3′ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357, 29–40. [CrossRef]
    [Google Scholar]
  44. Zeng, L., Falgout, B. & Markoff, L. ( 1998; ). Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. J Virol 72, 7510–7522.
    [Google Scholar]
  45. Zhang, B., Dong, H., Ye, H., Tilgner, M. & Shi, P. Y. ( 2010; ). Genetic analysis of West Nile virus containing a complete 3'CSI RNA deletion. Virology 408, 138–145. [CrossRef]
    [Google Scholar]
  46. Zhou, H., Xu, M., Huang, Q., Gates, A. T., Zhang, X. D., Castle, J. C., Stec, E., Ferrer, M., Strulovici, B. & Hazuda, D. ( 2008a; ). Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4, 495–504. [CrossRef]
    [Google Scholar]
  47. Zhou, Y., Rong, L., Lu, J., Pan, Q. & Liang, C. ( 2008b; ). Insulin-like growth factor II mRNA binding protein 1 associates with Gag protein of human immunodeficiency virus type 1, and its overexpression affects virus assembly. J Virol 82, 5683–5692. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.028597-0
Loading
/content/journal/jgv/10.1099/vir.0.028597-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error