1887

Abstract

Thiol groups of cysteine residues are crucial for the infectivity of various enveloped viruses, but their role in the infectivity of viruses of the family has thus far not been studied. This report shows that thiol groups are essential to the infectivity of hantaviruses. Alkylation of the thiol functional groups using the membrane-permeable compound -ethylmaleimide (NEM) and membrane-impermeable compound 5,5′-dithio--(2-nitrobenzoic acid) (DTNB) showed NEM to be a highly effective inactivator of Puumala and Tula hantaviruses. The NEM-inactivated hantavirus maintained the buoyant density of the wild-type virus. Furthermore, the antigenicity of glycoproteins and the cell attachment capacity of virions were retained at NEM concentrations that totally abolished virus infectivity. These results signified preservation of virion integrity following inactivation with NEM, making chemically inactivated virions valuable research antigens. It was demonstrated with biotin-conjugated maleimide, a mechanistic analogue of NEM, that all the structural proteins of hantavirus were sensitive towards thiol alkylation. In contrast to hantaviruses, NEM did not abolish Uukuniemi phlebovirus infectivity to the same extent. This indicates differences in the use of free thiols in virus entry among members of the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027896-0
2011-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1189.html?itemId=/content/journal/jgv/10.1099/vir.0.027896-0&mimeType=html&fmt=ahah

References

  1. Abell B. A. , Brown D. T. . ( 1993; ). Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. . J Virol 67:, 5496–5501.[PubMed]
    [Google Scholar]
  2. Abou-Jaoudé G. , Sureau C. . ( 2007; ). Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. . J Virol 81:, 13057–13066. [CrossRef] [PubMed]
    [Google Scholar]
  3. Appenzeller-Herzog C. , Ellgaard L. . ( 2008; ). The human PDI family: versatility packed into a single fold. . Biochim Biophys Acta 1783:, 535–548. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arthur L. O. , Bess J. W. Jr , Chertova E. N. , Rossio J. L. , Esser M. T. , Benveniste R. E. , Henderson L. E. , Lifson J. D. . ( 1998; ). Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. . AIDS Res Hum Retroviruses 14: Suppl. 3 S311–S319.[PubMed] [CrossRef]
    [Google Scholar]
  5. Boukhvalova M. S. , Prince G. A. , Blanco J. C. . ( 2010; ). Inactivation of respiratory syncytial virus by zinc finger reactive compounds. . Virol J 7:, 20. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chertova E. , Crise B. J. , Morcock D. R. , Bess J. W. Jr , Henderson L. E. , Lifson J. D. . ( 2003; ). Sites, mechanism of action and lack of reversibility of primate lentivirus inactivation by preferential covalent modification of virion internal proteins. . Curr Mol Med 3:, 265–272. [CrossRef] [PubMed]
    [Google Scholar]
  7. De Clercq E. . ( 2002; ). New anti-HIV agents and targets. . Med Res Rev 22:, 531–565. [CrossRef] [PubMed]
    [Google Scholar]
  8. Estrada D. F. , Boudreaux D. M. , Zhong D. , St Jeor S. C. , De Guzman R. N. . ( 2009; ). The hantavirus glycoprotein G1 tail contains dual CCHC-type classical zinc fingers. . J Biol Chem 284:, 8654–8660. [CrossRef] [PubMed]
    [Google Scholar]
  9. Freedman R. B. , Hirst T. R. , Tuite M. F. . ( 1994; ). Protein disulphide isomerase: building bridges in protein folding. . Trends Biochem Sci 19:, 331–336. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gallagher T. M. . ( 1996; ). Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. . J Virol 70:, 4683–4690.[PubMed]
    [Google Scholar]
  11. García C. C. , Candurra N. A. , Damonte E. B. . ( 2000; ). Antiviral and virucidal activities against arenaviruses of zinc-finger active compounds. . Antivir Chem Chemother 11:, 231–237.[PubMed] [CrossRef]
    [Google Scholar]
  12. García C. C. , Djavani M. , Topisirovic I. , Borden K. L. , Salvato M. S. , Damonte E. B. . ( 2006; ). Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. . J Gen Virol 87:, 1217–1228. [CrossRef] [PubMed]
    [Google Scholar]
  13. Garry C. E. , Garry R. F. . ( 2004; ). Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). . Theor Biol Med Model 1:, 10. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gavrilovskaya I. N. , Shepley M. , Shaw R. , Ginsberg M. H. , Mackow E. R. . ( 1998; ). β3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. . Proc Natl Acad Sci U S A 95:, 7074–7079. [CrossRef] [PubMed]
    [Google Scholar]
  15. Guo J. , Wu T. , Anderson J. , Kane B. F. , Johnson D. G. , Gorelick R. J. , Henderson L. E. , Levin J. G. . ( 2000; ). Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. . J Virol 74:, 8980–8988. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hepojoki J. , Strandin T. , Vaheri A. , Lankinen H. . ( 2010; a). Interactions and oligomerization of hantavirus glycoproteins. . J Virol 84:, 227–242. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hepojoki J. M. , Strandin T. , Wang H. , Vapalahti O. , Vaheri A. , Lankinen H. . ( 2010; b). Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. . J Gen Virol 91:, 2341–2350. [CrossRef] [PubMed]
    [Google Scholar]
  18. Huiskonen J. T. , Hepojoki J. , Laurinmäki P. , Vaheri A. , Lankinen H. , Butcher S. J. , Grünewald K. . ( 2010; ). Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. . J Virol 84:, 4889–4897. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jain S. , McGinnes L. W. , Morrison T. G. . ( 2007; ). Thiol/disulfide exchange is required for membrane fusion directed by the Newcastle disease virus fusion protein. . J Virol 81:, 2328–2339. [CrossRef] [PubMed]
    [Google Scholar]
  20. Johnson P. E. , Turner R. B. , Wu Z. R. , Hairston L. , Guo J. , Levin J. G. , Summers M. F. . ( 2000; ). A mechanism for plus-strand transfer enhancement by the HIV-1 nucleocapsid protein during reverse transcription. . Biochemistry 39:, 9084–9091. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kallio E. R. , Klingström J. , Gustafsson E. , Manni T. , Vaheri A. , Henttonen H. , Vapalahti O. , Lundkvist A. . ( 2006; ). Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. . J Gen Virol 87:, 2127–2134. [CrossRef] [PubMed]
    [Google Scholar]
  22. Klempa B. , Meisel H. , Räth S. , Bartel J. , Ulrich R. , Krüger D. H. . ( 2003; ). Occurrence of renal and pulmonary syndrome in a region of northeast Germany where Tula hantavirus circulates. . J Clin Microbiol 41:, 4894–4897. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuismanen E. , Hedman K. , Saraste J. , Pettersson R. F. . ( 1982; ). Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex. . Mol Cell Biol 2:, 1444–1458.[PubMed]
    [Google Scholar]
  24. Lifson J. D. , Rossio J. L. , Piatak M. Jr , Bess J. Jr , Chertova E. , Schneider D. K. , Coalter V. J. , Poore B. , Kiser R. F. et al. ( 2004; ). Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. . AIDS Res Hum Retroviruses 20:, 772–787. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lu W. , Arraes L. C. , Ferreira W. T. , Andrieu J. M. . ( 2004; ). Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. . Nat Med 10:, 1359–1365. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lundkvist A. , Niklasson B. . ( 1992; ). Bank vole monoclonal antibodies against Puumala virus envelope glycoproteins: identification of epitopes involved in neutralization. . Arch Virol 126:, 93–105. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lundkvist A. , Hörling J. , Athlin L. , Rosén A. , Niklasson B. . ( 1993; ). Neutralizing human monoclonal antibodies against Puumala virus, causative agent of nephropathia epidemica: a novel method using antigen-coated magnetic beads for specific B cell isolation. . J Gen Virol 74:, 1303–1310. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lundkvist A. , Vapalahti O. , Plyusnin A. , Sjölander K. B. , Niklasson B. , Vaheri A. . ( 1996; a). Characterization of Tula virus antigenic determinants defined by monoclonal antibodies raised against baculovirus-expressed nucleocapsid protein. . Virus Res 45:, 29–44. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lundkvist A. , Kallio-Kokko H. , Sjölander K. B. , Lankinen H. , Niklasson B. , Vaheri A. , Vapalahti O. . ( 1996; b). Characterization of Puumala virus nucleocapsid protein: identification of B-cell epitopes and domains involved in protective immunity. . Virology 216:, 397–406. [CrossRef] [PubMed]
    [Google Scholar]
  30. Marsh M. , Helenius A. . ( 2006; ). Virus entry: open sesame. . Cell 124:, 729–740. [CrossRef] [PubMed]
    [Google Scholar]
  31. McDonnell N. B. , De Guzman R. N. , Rice W. G. , Turpin J. A. , Summers M. F. . ( 1997; ). Zinc ejection as a new rationale for the use of cystamine and related disulfide-containing antiviral agents in the treatment of AIDS. . J Med Chem 40:, 1969–1976. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mirazimi A. , Mousavi-Jazi M. , Sundqvist V. A. , Svensson L. . ( 1999; ). Free thiol groups are essential for infectivity of human cytomegalovirus. . J Gen Virol 80:, 2861–2865.[PubMed]
    [Google Scholar]
  33. Morcock D. R. , Thomas J. A. , Gagliardi T. D. , Gorelick R. J. , Roser J. D. , Chertova E. N. , Bess J. W. Jr , Ott D. E. , Sattentau Q. J. et al. ( 2005; ). Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. . J Virol 79:, 1533–1542. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pettersson, R. F. (1974). Uukuniemi virus, a non-cubical tick-borne Arbovirus. PhD thesis, University of Helsinki, Helsinki, Finland.
  35. Plyusnin A. , Vapalahti O. , Lankinen H. , Lehväslaiho H. , Apekina N. , Myasnikov Y. , Kallio-Kokko H. , Henttonen H. , Lundkvist A. et al. ( 1994; ). Tula virus: a newly detected hantavirus carried by European common voles. . J Virol 68:, 7833–7839.[PubMed]
    [Google Scholar]
  36. Plyusnin A. , Vapalahti O. , Vaheri A. . ( 1996; ). Hantaviruses: genome structure, expression and evolution. . J Gen Virol 77:, 2677–2687. [CrossRef] [PubMed]
    [Google Scholar]
  37. Potter S. J. , Chew C. B. , Steain M. , Dwyer D. E. , Saksena N. K. . ( 2004; ). Obstacles to successful antiretroviral treatment of HIV-1 infection: problems and perspectives. . Indian J Med Res 119:, 217–237.[PubMed]
    [Google Scholar]
  38. Rein A. , Henderson L. E. , Levin J. G. . ( 1998; ). Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. . Trends Biochem Sci 23:, 297–301. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rice W. G. , Schaeffer C. A. , Harten B. , Villinger F. , South T. L. , Summers M. F. , Henderson L. E. , Bess J. W. Jr , Arthur L. O. et al. ( 1993; ). Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. . Nature 361:, 473–475. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rice W. G. , Supko J. G. , Malspeis L. , Buckheit R. W. Jr , Clanton D. , Bu M. , Graham L. , Schaeffer C. A. , Turpin J. A. et al. ( 1995; ). Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. . Science 270:, 1194–1197. [CrossRef] [PubMed]
    [Google Scholar]
  41. Rossio J. L. , Esser M. T. , Suryanarayana K. , Schneider D. K. , Bess J. W. Jr , Vasquez G. M. , Wiltrout T. A. , Chertova E. , Grimes M. K. et al. ( 1998; ). Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. . J Virol 72:, 7992–8001.[PubMed]
    [Google Scholar]
  42. Ryser H. J. , Levy E. M. , Mandel R. , DiSciullo G. J. . ( 1994; ). Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus–receptor interaction. . Proc Natl Acad Sci U S A 91:, 4559–4563. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sanders D. A. . ( 2000; ). Sulfhydryl involvement in fusion mechanisms. . Subcell Biochem 34:, 483–514. [CrossRef] [PubMed]
    [Google Scholar]
  44. Schmaljohn C. , Hjelle B. . ( 1997; ). Hantaviruses: a global disease problem. . Emerg Infect Dis 3:, 95–104. [CrossRef] [PubMed]
    [Google Scholar]
  45. Schmaljohn C. S. , Hasty S. E. , Dalrymple J. M. , LeDuc J. W. , Lee H. W. , von Bonsdorff C. H. , Brummer-Korvenkontio M. , Vaheri A. , Tsai T. F. et al. ( 1985; ). Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. . Science 227:, 1041–1044. [CrossRef] [PubMed]
    [Google Scholar]
  46. Strandin T. , Hepojoki J. , Wang H. , Vaheri A. , Lankinen H. . ( 2008; ). Hantaviruses and TNF-α act synergistically to induce ERK1/2 inactivation in Vero E6 cells. . Virol J 5:, 110. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tischler N. D. , Gonzalez A. , Perez-Acle T. , Rosemblatt M. , Valenzuela P. D. . ( 2005; ). Hantavirus Gc glycoprotein: evidence for a class II fusion protein. . J Gen Virol 86:, 2937–2947. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tummino P. J. , Harvey P. J. , McQuade T. , Domagala J. , Gogliotti R. , Sanchez J. , Song Y. , Hupe D. . ( 1997; ). The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein zinc ejection activity of disulfide benzamides and benzisothiazolones: correlation with anti-HIV and virucidal activities. . Antimicrob Agents Chemother 41:, 394–400.[PubMed]
    [Google Scholar]
  49. Vapalahti O. , Kallio-Kokko H. , Närvänen A. , Julkunen I. , Lundkvist A. , Plyusnin A. , Lehväslaiho H. , Brummer-Korvenkontio M. , Vaheri A. , Lankinen H. . ( 1995; ). Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. . J Med Virol 46:, 293–303. [CrossRef] [PubMed]
    [Google Scholar]
  50. Vapalahti O. , Lundkvist A. , Kukkonen S. K. , Cheng Y. , Gilljam M. , Kanerva M. , Manni T. , Pejcoch M. , Niemimaa J. et al. ( 1996; ). Isolation and characterization of Tula virus, a distinct serotype in the genus Hantavirus, family Bunyaviridae . . J Gen Virol 77:, 3063–3067. [CrossRef] [PubMed]
    [Google Scholar]
  51. Vapalahti O. , Mustonen J. , Lundkvist A. , Henttonen H. , Plyusnin A. , Vaheri A. . ( 2003; ). Hantavirus infections in Europe. . Lancet Infect Dis 3:, 653–661. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wang H. , Alminaite A. , Vaheri A. , Plyusnin A. . ( 2010; ). Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. . Virus Res 151:, 205–212. [CrossRef] [PubMed]
    [Google Scholar]
  53. Weissenhorn W. , Hinz A. , Gaudin Y. . ( 2007; ). Virus membrane fusion. . FEBS Lett 581:, 2150–2155. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027896-0
Loading
/content/journal/jgv/10.1099/vir.0.027896-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error