1887

Abstract

The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1–D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027607-0
2011-05-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1117.html?itemId=/content/journal/jgv/10.1099/vir.0.027607-0&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301 [CrossRef][PubMed]
    [Google Scholar]
  2. Ballesteros M. L., Sánchez C. M., Enjuanes L. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388 [CrossRef][PubMed]
    [Google Scholar]
  3. Beniac D. R., Andonov A., Grudeski E., Booth T. F. 2006; Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 13:751–752 [CrossRef][PubMed]
    [Google Scholar]
  4. Böhm G., Muhr R., Jaenicke R. 1992; Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195 [CrossRef][PubMed]
    [Google Scholar]
  5. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J. M. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [CrossRef][PubMed]
    [Google Scholar]
  6. Breslin J. J., Mørk I., Smith M. K., Vogel L. K., Hemmila E. M., Bonavia A., Talbot P. J., Sjöström H., Norén O., Holmes K. V. 2003; Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 °C. J Virol 77:4435–4438 [CrossRef][PubMed]
    [Google Scholar]
  7. Callebaut P., Correa I., Pensaert M., Jiménez G., Enjuanes L. 1988; Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J Gen Virol 69:1725–1730 [CrossRef][PubMed]
    [Google Scholar]
  8. Casasnovas J. M., Springer T. A. 1995; Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem 270:13216–13224[PubMed] [CrossRef]
    [Google Scholar]
  9. Casasnovas J. M., Bickford J. K., Springer T. A. 1998; The domain structure of ICAM-1 and the kinetics of binding to rhinovirus. J Virol 72:6244–6246[PubMed]
    [Google Scholar]
  10. Cavanagh D., Davis P. J., Pappin D. J., Binns M. M., Boursnell M. E., Brown T. D. 1986; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4:133–143 [CrossRef][PubMed]
    [Google Scholar]
  11. Corapi W. V., Darteil R. J., Audonnet J. C., Chappuis G. E. 1995; Localization of antigenic sites of the S glycoprotein of feline infectious peritonitis virus involved in neutralization and antibody-dependent enhancement. J Virol 69:2858–2862[PubMed]
    [Google Scholar]
  12. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res 10:77–93 [CrossRef][PubMed]
    [Google Scholar]
  13. Correa I., Gebauer F., Bullido M. J., Suñé C., Baay M. F., Zwaagstra K. A., Posthumus W. P., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J Gen Virol 71:271–279 [CrossRef][PubMed]
    [Google Scholar]
  14. de Groot, R. J., Ziebuhr, J., Poon, L. L., Woo, P. C., Talbot, P., Rottier, P. J. M., Holmes, K. V., Baric, R., Perlman, S. & other authors. (2008 Revision of the family Coronaviridae. Taxonomic proposal of the Coronavirus Study Group to the ICTV Executive Committee http://talk.ictvonline.org/media/p/1230.aspx
  15. de Haan C. A. M., Li Z., te Lintelo E., Bosch B. J., Haijema B. J., Rottier P. J. M. 2005; Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol 79:14451–14456 [CrossRef][PubMed]
    [Google Scholar]
  16. de Haan C. A., Haijema B. J., Schellen P., Schreur P. W., te Lintelo E., Vennema H., Rottier P. J. 2008; Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. J Virol 82:6078–6083 [CrossRef][PubMed]
    [Google Scholar]
  17. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375[PubMed]
    [Google Scholar]
  18. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J Gen Virol 71:1313–1323 [CrossRef][PubMed]
    [Google Scholar]
  19. Delmas B., Gelfi J., L’Haridon R., Vogel L. K., Sjöström H., Norén O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420 [CrossRef][PubMed]
    [Google Scholar]
  20. Delmas B., Gelfi J., Sjöström H., Noren O., Laude H. 1993; Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298[PubMed]
    [Google Scholar]
  21. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H.-R., Becker S., Rabenau H., Panning M., Kolesnikova L. et al. 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef][PubMed]
    [Google Scholar]
  22. Enjuanes L., Gorbalenya A. E., de Groot R. J., Cowley J. A., Ziebuhr J., Snijder E. J. 2008; Nidovirales. In Encyclopedia of Virology, 3rd edn. pp. 419–430 Edited by Mahy B. W. J., Van Regenmortel M. H. V. Oxford: Elsevier; [CrossRef]
    [Google Scholar]
  23. Gallagher T. M., Buchmeier M. J. 2001; Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374 [CrossRef][PubMed]
    [Google Scholar]
  24. Gebauer F., Posthumus W. P. A., Correa I., Suñé C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238 [CrossRef][PubMed]
    [Google Scholar]
  25. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016[PubMed]
    [Google Scholar]
  26. Grosse B., Siddell S. G. 1994; Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. Virology 202:814–824 [CrossRef][PubMed]
    [Google Scholar]
  27. Holmes K. V. 2005; Structural biology. Adaptation of SARS coronavirus to humans. Science 309:1822–1823 [CrossRef][PubMed]
    [Google Scholar]
  28. Jeffers S. A., Tusell S. M., Gillim-Ross L., Hemmila E. M., Achenbach J. E., Babcock G. J., Thomas W. D. Jr, Thackray L. B., Young M. D. et al. 2004; CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101:15748–15753 [CrossRef][PubMed]
    [Google Scholar]
  29. Krempl C., Herrler G. 2001; Sialic acid binding activity of transmissible gastroenteritis coronavirus affects sedimentation behavior of virions and solubilized glycoproteins. J Virol 75:844–849 [CrossRef][PubMed]
    [Google Scholar]
  30. Krempl C., Schultze B., Laude H., Herrler G. 1997; Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287[PubMed]
    [Google Scholar]
  31. Lau Y.-L. 2004; SARS: future research and vaccine. Paediatr Respir Rev 5:300–303 [CrossRef][PubMed]
    [Google Scholar]
  32. Laude H., Godet M., Bernard S., Gelfi J., Duarte M., Delmas B. 1995; Functional domains in the spike protein of transmissible gastroenteritis virus. Adv Exp Med Biol 380:299–304[PubMed]
    [Google Scholar]
  33. Lea S. M., Powell R. M., McKee T., Evans D. J., Brown D., Stuart D. I., van der Merwe P. A. 1998; Determination of the affinity and kinetic constants for the interaction between the human virus echovirus 11 and its cellular receptor, CD55. J Biol Chem 273:30443–30447 [CrossRef][PubMed]
    [Google Scholar]
  34. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. et al. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef][PubMed]
    [Google Scholar]
  35. Li F., Li W., Farzan M., Harrison S. C. 2005; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868 [CrossRef][PubMed]
    [Google Scholar]
  36. Masters P. S. 2006; The molecular biology of coronaviruses. Adv Virus Res 66:193–292 [CrossRef][PubMed]
    [Google Scholar]
  37. Miura T. A., Travanty E. A., Oko L., Bielefeldt-Ohmann H., Weiss S. R., Beauchemin N., Holmes K. V. 2008; The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a −/− mice. J Virol 82:755–763 [CrossRef][PubMed]
    [Google Scholar]
  38. Mizushima S., Nagata S. 1990; pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322 [CrossRef][PubMed]
    [Google Scholar]
  39. Myszka D. G., Sweet R. W., Hensley P., Brigham-Burke M., Kwong P. D., Hendrickson W. A., Wyatt R., Sodroski J., Doyle M. L. 2000; Energetics of the HIV gp120–CD4 binding reaction. Proc Natl Acad Sci U S A 97:9026–9031 [CrossRef][PubMed]
    [Google Scholar]
  40. Nam H. J., Song M.-Y., Choi D.-H., Yang S.-H., Jin H.-T., Sung Y.-C. 2010; Marked enhancement of antigen-specific T-cell responses by IL-7-fused nonlytic, but not lytic, Fc as a genetic adjuvant. Eur J Immunol 40:351–358 [CrossRef][PubMed]
    [Google Scholar]
  41. Ordoño D., Enjuanes L., Casasnovas J. M. 2006; Methods for preparation of low abundance glycoproteins from mammalian cell supernatants. Int J Biol Macromol 39:151–156 [CrossRef][PubMed]
    [Google Scholar]
  42. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. 1993; Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396 [CrossRef][PubMed]
    [Google Scholar]
  43. Perlman S. 1998; Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. Adv Exp Med Biol 440:503–513[PubMed]
    [Google Scholar]
  44. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Peñaranda S., Bankamp B., Maher K. et al. 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef][PubMed]
    [Google Scholar]
  45. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñé C., Bullido M., Gebauer F., Smerdou C., Callebaut P. et al. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417 [CrossRef][PubMed]
    [Google Scholar]
  46. Sánchez C. M., Gebauer F., Suñé C., Mendez A., Dopazo J., Enjuanes L. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105 [CrossRef][PubMed]
    [Google Scholar]
  47. Santiago C., Björling E., Stehle T., Casasnovas J. M. 2002; Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 277:32294–32301 [CrossRef][PubMed]
    [Google Scholar]
  48. Sibéril S., Dutertre C.-A., Fridman W.-H., Teillaud J.-L. 2007; FcγR: the key to optimize therapeutic antibodies?. Crit Rev Oncol Hematol 62:26–33 [CrossRef][PubMed]
    [Google Scholar]
  49. Stanley P. 1989; Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9:377–383[PubMed]
    [Google Scholar]
  50. Suñé C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. 1990; Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569 [CrossRef][PubMed]
    [Google Scholar]
  51. Supekar V. M., Bruckmann C., Ingallinella P., Bianchi E., Pessi A., Carfí A. 2004; Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. Proc Natl Acad Sci U S A 101:17958–17963 [CrossRef][PubMed]
    [Google Scholar]
  52. Tresnan D. B., Levis R., Holmes K. V. 1996; Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70:8669–8674[PubMed]
    [Google Scholar]
  53. Tsai J. C., Zelus B. D., Holmes K. V., Weiss S. R. 2003; The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. J Virol 77:841–850 [CrossRef][PubMed]
    [Google Scholar]
  54. van den Brink E. N., Ter Meulen J., Cox F., Jongeneelen M. A., Thijsse A., Throsby M., Marissen W. E., Rood P. M., Bakker A. B. et al. 2005; Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol 79:1635–1644 [CrossRef][PubMed]
    [Google Scholar]
  55. Weiss S. R., Navas-Martin S. 2005; Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69:635–664 [CrossRef][PubMed]
    [Google Scholar]
  56. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2004; A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201 [CrossRef][PubMed]
    [Google Scholar]
  57. Wu K., Li W., Peng G., Li F. 2009; Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc Natl Acad Sci U S A 106:19970–19974[PubMed] [CrossRef]
    [Google Scholar]
  58. Xing L., Tjarnlund K., Lindqvist B., Kaplan G. G., Feigelstock D., Cheng R. H., Casasnovas J. M. 2000; Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J 19:1207–1216 [CrossRef][PubMed]
    [Google Scholar]
  59. Xu Y., Liu Y., Lou Z., Qin L., Li X., Bai Z., Pang H., Tien P., Gao G. F., Rao Z. 2004; Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem 279:30514–30522 [CrossRef][PubMed]
    [Google Scholar]
  60. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422 [CrossRef][PubMed]
    [Google Scholar]
  61. Yokomori K., Lai M. M. 1992; Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol 66:6194–6199[PubMed]
    [Google Scholar]
  62. Zhang H., Wang G., Li J., Nie Y., Shi X., Lian G., Wang W., Yin X., Zhao Y. et al. 2004; Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78:6938–6945 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027607-0
Loading
/content/journal/jgv/10.1099/vir.0.027607-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error