1887

Abstract

The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1–D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027607-0
2011-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1117.html?itemId=/content/journal/jgv/10.1099/vir.0.027607-0&mimeType=html&fmt=ahah

References

  1. Abraham S. , Kienzle T. E. , Lapps W. , Brian D. A. . ( 1990; ). Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. . Virology 176:, 296–301. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ballesteros M. L. , Sánchez C. M. , Enjuanes L. . ( 1997; ). Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. . Virology 227:, 378–388. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beniac D. R. , Andonov A. , Grudeski E. , Booth T. F. . ( 2006; ). Architecture of the SARS coronavirus prefusion spike. . Nat Struct Mol Biol 13:, 751–752. [CrossRef] [PubMed]
    [Google Scholar]
  4. Böhm G. , Muhr R. , Jaenicke R. . ( 1992; ). Quantitative analysis of protein far UV circular dichroism spectra by neural networks. . Protein Eng 5:, 191–195. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bosch B. J. , van der Zee R. , de Haan C. A. , Rottier P. J. M. . ( 2003; ). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. . J Virol 77:, 8801–8811. [CrossRef] [PubMed]
    [Google Scholar]
  6. Breslin J. J. , Mørk I. , Smith M. K. , Vogel L. K. , Hemmila E. M. , Bonavia A. , Talbot P. J. , Sjöström H. , Norén O. , Holmes K. V. . ( 2003; ). Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 °C. . J Virol 77:, 4435–4438. [CrossRef] [PubMed]
    [Google Scholar]
  7. Callebaut P. , Correa I. , Pensaert M. , Jiménez G. , Enjuanes L. . ( 1988; ). Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. . J Gen Virol 69:, 1725–1730. [CrossRef] [PubMed]
    [Google Scholar]
  8. Casasnovas J. M. , Springer T. A. . ( 1995; ). Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. . J Biol Chem 270:, 13216–13224.[PubMed] [CrossRef]
    [Google Scholar]
  9. Casasnovas J. M. , Bickford J. K. , Springer T. A. . ( 1998; ). The domain structure of ICAM-1 and the kinetics of binding to rhinovirus. . J Virol 72:, 6244–6246.[PubMed]
    [Google Scholar]
  10. Cavanagh D. , Davis P. J. , Pappin D. J. , Binns M. M. , Boursnell M. E. , Brown T. D. . ( 1986; ). Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. . Virus Res 4:, 133–143. [CrossRef] [PubMed]
    [Google Scholar]
  11. Corapi W. V. , Darteil R. J. , Audonnet J. C. , Chappuis G. E. . ( 1995; ). Localization of antigenic sites of the S glycoprotein of feline infectious peritonitis virus involved in neutralization and antibody-dependent enhancement. . J Virol 69:, 2858–2862.[PubMed]
    [Google Scholar]
  12. Correa I. , Jiménez G. , Suñé C. , Bullido M. J. , Enjuanes L. . ( 1988; ). Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. . Virus Res 10:, 77–93. [CrossRef] [PubMed]
    [Google Scholar]
  13. Correa I. , Gebauer F. , Bullido M. J. , Suñé C. , Baay M. F. , Zwaagstra K. A. , Posthumus W. P. , Lenstra J. A. , Enjuanes L. . ( 1990; ). Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. . J Gen Virol 71:, 271–279. [CrossRef] [PubMed]
    [Google Scholar]
  14. de Groot, R. J., Ziebuhr, J., Poon, L. L., Woo, P. C., Talbot, P., Rottier, P. J. M., Holmes, K. V., Baric, R., Perlman, S. & other authors. (2008). Revision of the family Coronaviridae. Taxonomic proposal of the Coronavirus Study Group to the ICTV Executive Committee. http://talk.ictvonline.org/media/p/1230.aspx.
  15. de Haan C. A. M. , Li Z. , te Lintelo E. , Bosch B. J. , Haijema B. J. , Rottier P. J. M. . ( 2005; ). Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. . J Virol 79:, 14451–14456. [CrossRef] [PubMed]
    [Google Scholar]
  16. de Haan C. A. , Haijema B. J. , Schellen P. , Schreur P. W. , te Lintelo E. , Vennema H. , Rottier P. J. . ( 2008; ). Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. . J Virol 82:, 6078–6083. [CrossRef] [PubMed]
    [Google Scholar]
  17. Delmas B. , Laude H. . ( 1990; ). Assembly of coronavirus spike protein into trimers and its role in epitope expression. . J Virol 64:, 5367–5375.[PubMed]
    [Google Scholar]
  18. Delmas B. , Rasschaert D. , Godet M. , Gelfi J. , Laude H. . ( 1990; ). Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. . J Gen Virol 71:, 1313–1323. [CrossRef] [PubMed]
    [Google Scholar]
  19. Delmas B. , Gelfi J. , L’Haridon R. , Vogel L. K. , Sjöström H. , Norén O. , Laude H. . ( 1992; ). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. . Nature 357:, 417–420. [CrossRef] [PubMed]
    [Google Scholar]
  20. Delmas B. , Gelfi J. , Sjöström H. , Noren O. , Laude H. . ( 1993; ). Further characterization of aminopeptidase-N as a receptor for coronaviruses. . Adv Exp Med Biol 342:, 293–298.[PubMed]
    [Google Scholar]
  21. Drosten C. , Günther S. , Preiser W. , van der Werf S. , Brodt H.-R. , Becker S. , Rabenau H. , Panning M. , Kolesnikova L. et al. ( 2003; ). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. . N Engl J Med 348:, 1967–1976. [CrossRef] [PubMed]
    [Google Scholar]
  22. Enjuanes L. , Gorbalenya A. E. , de Groot R. J. , Cowley J. A. , Ziebuhr J. , Snijder E. J. . ( 2008; ). Nidovirales. . In Encyclopedia of Virology, , 3rd edn., pp. 419–430. Edited by Mahy B. W. J. , Van Regenmortel M. H. V. . . Oxford:: Elsevier;. [CrossRef]
    [Google Scholar]
  23. Gallagher T. M. , Buchmeier M. J. . ( 2001; ). Coronavirus spike proteins in viral entry and pathogenesis. . Virology 279:, 371–374. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gebauer F. , Posthumus W. P. A. , Correa I. , Suñé C. , Smerdou C. , Sánchez C. M. , Lenstra J. A. , Meloen R. H. , Enjuanes L. . ( 1991; ). Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. . Virology 183:, 225–238. [CrossRef] [PubMed]
    [Google Scholar]
  25. Godet M. , Grosclaude J. , Delmas B. , Laude H. . ( 1994; ). Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. . J Virol 68:, 8008–8016.[PubMed]
    [Google Scholar]
  26. Grosse B. , Siddell S. G. . ( 1994; ). Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. . Virology 202:, 814–824. [CrossRef] [PubMed]
    [Google Scholar]
  27. Holmes K. V. . ( 2005; ). Structural biology. Adaptation of SARS coronavirus to humans. . Science 309:, 1822–1823. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jeffers S. A. , Tusell S. M. , Gillim-Ross L. , Hemmila E. M. , Achenbach J. E. , Babcock G. J. , Thomas W. D. Jr , Thackray L. B. , Young M. D. et al. ( 2004; ). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. . Proc Natl Acad Sci U S A 101:, 15748–15753. [CrossRef] [PubMed]
    [Google Scholar]
  29. Krempl C. , Herrler G. . ( 2001; ). Sialic acid binding activity of transmissible gastroenteritis coronavirus affects sedimentation behavior of virions and solubilized glycoproteins. . J Virol 75:, 844–849. [CrossRef] [PubMed]
    [Google Scholar]
  30. Krempl C. , Schultze B. , Laude H. , Herrler G. . ( 1997; ). Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. . J Virol 71:, 3285–3287.[PubMed]
    [Google Scholar]
  31. Lau Y.-L. . ( 2004; ). SARS: future research and vaccine. . Paediatr Respir Rev 5:, 300–303. [CrossRef] [PubMed]
    [Google Scholar]
  32. Laude H. , Godet M. , Bernard S. , Gelfi J. , Duarte M. , Delmas B. . ( 1995; ). Functional domains in the spike protein of transmissible gastroenteritis virus. . Adv Exp Med Biol 380:, 299–304.[PubMed]
    [Google Scholar]
  33. Lea S. M. , Powell R. M. , McKee T. , Evans D. J. , Brown D. , Stuart D. I. , van der Merwe P. A. . ( 1998; ). Determination of the affinity and kinetic constants for the interaction between the human virus echovirus 11 and its cellular receptor, CD55. . J Biol Chem 273:, 30443–30447. [CrossRef] [PubMed]
    [Google Scholar]
  34. Li W. , Moore M. J. , Vasilieva N. , Sui J. , Wong S. K. , Berne M. A. , Somasundaran M. , Sullivan J. L. , Luzuriaga K. et al. ( 2003; ). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. . Nature 426:, 450–454. [CrossRef] [PubMed]
    [Google Scholar]
  35. Li F. , Li W. , Farzan M. , Harrison S. C. . ( 2005; ). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. . Science 309:, 1864–1868. [CrossRef] [PubMed]
    [Google Scholar]
  36. Masters P. S. . ( 2006; ). The molecular biology of coronaviruses. . Adv Virus Res 66:, 193–292. [CrossRef] [PubMed]
    [Google Scholar]
  37. Miura T. A. , Travanty E. A. , Oko L. , Bielefeldt-Ohmann H. , Weiss S. R. , Beauchemin N. , Holmes K. V. . ( 2008; ). The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a −/− mice. . J Virol 82:, 755–763. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mizushima S. , Nagata S. . ( 1990; ). pEF-BOS, a powerful mammalian expression vector. . Nucleic Acids Res 18:, 5322. [CrossRef] [PubMed]
    [Google Scholar]
  39. Myszka D. G. , Sweet R. W. , Hensley P. , Brigham-Burke M. , Kwong P. D. , Hendrickson W. A. , Wyatt R. , Sodroski J. , Doyle M. L. . ( 2000; ). Energetics of the HIV gp120–CD4 binding reaction. . Proc Natl Acad Sci U S A 97:, 9026–9031. [CrossRef] [PubMed]
    [Google Scholar]
  40. Nam H. J. , Song M.-Y. , Choi D.-H. , Yang S.-H. , Jin H.-T. , Sung Y.-C. . ( 2010; ). Marked enhancement of antigen-specific T-cell responses by IL-7-fused nonlytic, but not lytic, Fc as a genetic adjuvant. . Eur J Immunol 40:, 351–358. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ordoño D. , Enjuanes L. , Casasnovas J. M. . ( 2006; ). Methods for preparation of low abundance glycoproteins from mammalian cell supernatants. . Int J Biol Macromol 39:, 151–156. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pear W. S. , Nolan G. P. , Scott M. L. , Baltimore D. . ( 1993; ). Production of high-titer helper-free retroviruses by transient transfection. . Proc Natl Acad Sci U S A 90:, 8392–8396. [CrossRef] [PubMed]
    [Google Scholar]
  43. Perlman S. . ( 1998; ). Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. . Adv Exp Med Biol 440:, 503–513.[PubMed]
    [Google Scholar]
  44. Rota P. A. , Oberste M. S. , Monroe S. S. , Nix W. A. , Campagnoli R. , Icenogle J. P. , Peñaranda S. , Bankamp B. , Maher K. et al. ( 2003; ). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. . Science 300:, 1394–1399. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sánchez C. M. , Jiménez G. , Laviada M. D. , Correa I. , Suñé C. , Bullido M. , Gebauer F. , Smerdou C. , Callebaut P. et al. ( 1990; ). Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. . Virology 174:, 410–417. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sánchez C. M. , Gebauer F. , Suñé C. , Mendez A. , Dopazo J. , Enjuanes L. . ( 1992; ). Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. . Virology 190:, 92–105. [CrossRef] [PubMed]
    [Google Scholar]
  47. Santiago C. , Björling E. , Stehle T. , Casasnovas J. M. . ( 2002; ). Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. . J Biol Chem 277:, 32294–32301. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sibéril S. , Dutertre C.-A. , Fridman W.-H. , Teillaud J.-L. . ( 2007; ). FcγR: the key to optimize therapeutic antibodies?. Crit Rev Oncol Hematol 62:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  49. Stanley P. . ( 1989; ). Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. . Mol Cell Biol 9:, 377–383.[PubMed]
    [Google Scholar]
  50. Suñé C. , Jiménez G. , Correa I. , Bullido M. J. , Gebauer F. , Smerdou C. , Enjuanes L. . ( 1990; ). Mechanisms of transmissible gastroenteritis coronavirus neutralization. . Virology 177:, 559–569. [CrossRef] [PubMed]
    [Google Scholar]
  51. Supekar V. M. , Bruckmann C. , Ingallinella P. , Bianchi E. , Pessi A. , Carfí A. . ( 2004; ). Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. . Proc Natl Acad Sci U S A 101:, 17958–17963. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tresnan D. B. , Levis R. , Holmes K. V. . ( 1996; ). Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. . J Virol 70:, 8669–8674.[PubMed]
    [Google Scholar]
  53. Tsai J. C. , Zelus B. D. , Holmes K. V. , Weiss S. R. . ( 2003; ). The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. . J Virol 77:, 841–850. [CrossRef] [PubMed]
    [Google Scholar]
  54. van den Brink E. N. , Ter Meulen J. , Cox F. , Jongeneelen M. A. , Thijsse A. , Throsby M. , Marissen W. E. , Rood P. M. , Bakker A. B. et al. ( 2005; ). Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. . J Virol 79:, 1635–1644. [CrossRef] [PubMed]
    [Google Scholar]
  55. Weiss S. R. , Navas-Martin S. . ( 2005; ). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. . Microbiol Mol Biol Rev 69:, 635–664. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wong S. K. , Li W. , Moore M. J. , Choe H. , Farzan M. . ( 2004; ). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. . J Biol Chem 279:, 3197–3201. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wu K. , Li W. , Peng G. , Li F. . ( 2009; ). Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. . Proc Natl Acad Sci U S A 106:, 19970–19974.[PubMed] [CrossRef]
    [Google Scholar]
  58. Xing L. , Tjarnlund K. , Lindqvist B. , Kaplan G. G. , Feigelstock D. , Cheng R. H. , Casasnovas J. M. . ( 2000; ). Distinct cellular receptor interactions in poliovirus and rhinoviruses. . EMBO J 19:, 1207–1216. [CrossRef] [PubMed]
    [Google Scholar]
  59. Xu Y. , Liu Y. , Lou Z. , Qin L. , Li X. , Bai Z. , Pang H. , Tien P. , Gao G. F. , Rao Z. . ( 2004; ). Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. . J Biol Chem 279:, 30514–30522. [CrossRef] [PubMed]
    [Google Scholar]
  60. Yeager C. L. , Ashmun R. A. , Williams R. K. , Cardellichio C. B. , Shapiro L. H. , Look A. T. , Holmes K. V. . ( 1992; ). Human aminopeptidase N is a receptor for human coronavirus 229E. . Nature 357:, 420–422. [CrossRef] [PubMed]
    [Google Scholar]
  61. Yokomori K. , Lai M. M. . ( 1992; ). Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. . J Virol 66:, 6194–6199.[PubMed]
    [Google Scholar]
  62. Zhang H. , Wang G. , Li J. , Nie Y. , Shi X. , Lian G. , Wang W. , Yin X. , Zhao Y. et al. ( 2004; ). Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. . J Virol 78:, 6938–6945. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027607-0
Loading
/content/journal/jgv/10.1099/vir.0.027607-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1117 - 1126

Sequence alignment of the S1 (TGEV strain PUR-MAD) and S1H (PRCV strain HOL87) proteins

Far-UV CD spectra of the S35 protein

Binding of antibodies specific for antigenic sites C and B to soluble CoV S1 length variants comprising the N-terminal region [Single PDF file](378 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error