1887

Abstract

The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1–D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027607-0
2011-05-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1117.html?itemId=/content/journal/jgv/10.1099/vir.0.027607-0&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301 [View Article][PubMed]
    [Google Scholar]
  2. Ballesteros M. L., Sánchez C. M., Enjuanes L. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388 [View Article][PubMed]
    [Google Scholar]
  3. Beniac D. R., Andonov A., Grudeski E., Booth T. F. 2006; Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 13:751–752 [View Article][PubMed]
    [Google Scholar]
  4. Böhm G., Muhr R., Jaenicke R. 1992; Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195 [View Article][PubMed]
    [Google Scholar]
  5. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J. M. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [View Article][PubMed]
    [Google Scholar]
  6. Breslin J. J., Mørk I., Smith M. K., Vogel L. K., Hemmila E. M., Bonavia A., Talbot P. J., Sjöström H., Norén O., Holmes K. V. 2003; Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 °C. J Virol 77:4435–4438 [View Article][PubMed]
    [Google Scholar]
  7. Callebaut P., Correa I., Pensaert M., Jiménez G., Enjuanes L. 1988; Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J Gen Virol 69:1725–1730 [View Article][PubMed]
    [Google Scholar]
  8. Casasnovas J. M., Springer T. A. 1995; Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem 270:13216–13224[PubMed] [CrossRef]
    [Google Scholar]
  9. Casasnovas J. M., Bickford J. K., Springer T. A. 1998; The domain structure of ICAM-1 and the kinetics of binding to rhinovirus. J Virol 72:6244–6246[PubMed]
    [Google Scholar]
  10. Cavanagh D., Davis P. J., Pappin D. J., Binns M. M., Boursnell M. E., Brown T. D. 1986; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4:133–143 [View Article][PubMed]
    [Google Scholar]
  11. Corapi W. V., Darteil R. J., Audonnet J. C., Chappuis G. E. 1995; Localization of antigenic sites of the S glycoprotein of feline infectious peritonitis virus involved in neutralization and antibody-dependent enhancement. J Virol 69:2858–2862[PubMed]
    [Google Scholar]
  12. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res 10:77–93 [View Article][PubMed]
    [Google Scholar]
  13. Correa I., Gebauer F., Bullido M. J., Suñé C., Baay M. F., Zwaagstra K. A., Posthumus W. P., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J Gen Virol 71:271–279 [View Article][PubMed]
    [Google Scholar]
  14. de Groot, R. J., Ziebuhr, J., Poon, L. L., Woo, P. C., Talbot, P., Rottier, P. J. M., Holmes, K. V., Baric, R., Perlman, S. & other authors. (2008 Revision of the family Coronaviridae. Taxonomic proposal of the Coronavirus Study Group to the ICTV Executive Committee http://talk.ictvonline.org/media/p/1230.aspx
  15. de Haan C. A. M., Li Z., te Lintelo E., Bosch B. J., Haijema B. J., Rottier P. J. M. 2005; Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol 79:14451–14456 [View Article][PubMed]
    [Google Scholar]
  16. de Haan C. A., Haijema B. J., Schellen P., Schreur P. W., te Lintelo E., Vennema H., Rottier P. J. 2008; Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. J Virol 82:6078–6083 [View Article][PubMed]
    [Google Scholar]
  17. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375[PubMed]
    [Google Scholar]
  18. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J Gen Virol 71:1313–1323 [View Article][PubMed]
    [Google Scholar]
  19. Delmas B., Gelfi J., L’Haridon R., Vogel L. K., Sjöström H., Norén O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420 [View Article][PubMed]
    [Google Scholar]
  20. Delmas B., Gelfi J., Sjöström H., Noren O., Laude H. 1993; Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298[PubMed]
    [Google Scholar]
  21. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H.-R., Becker S., Rabenau H., Panning M., Kolesnikova L. et al. 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [View Article][PubMed]
    [Google Scholar]
  22. Enjuanes L., Gorbalenya A. E., de Groot R. J., Cowley J. A., Ziebuhr J., Snijder E. J. 2008; Nidovirales. In Encyclopedia of Virology, 3rd edn. pp. 419–430 Edited by Mahy B. W. J., Van Regenmortel M. H. V. Oxford: Elsevier; [View Article]
    [Google Scholar]
  23. Gallagher T. M., Buchmeier M. J. 2001; Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374 [View Article][PubMed]
    [Google Scholar]
  24. Gebauer F., Posthumus W. P. A., Correa I., Suñé C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238 [View Article][PubMed]
    [Google Scholar]
  25. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016[PubMed]
    [Google Scholar]
  26. Grosse B., Siddell S. G. 1994; Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. Virology 202:814–824 [View Article][PubMed]
    [Google Scholar]
  27. Holmes K. V. 2005; Structural biology. Adaptation of SARS coronavirus to humans. Science 309:1822–1823 [View Article][PubMed]
    [Google Scholar]
  28. Jeffers S. A., Tusell S. M., Gillim-Ross L., Hemmila E. M., Achenbach J. E., Babcock G. J., Thomas W. D. Jr, Thackray L. B., Young M. D. et al. 2004; CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101:15748–15753 [View Article][PubMed]
    [Google Scholar]
  29. Krempl C., Herrler G. 2001; Sialic acid binding activity of transmissible gastroenteritis coronavirus affects sedimentation behavior of virions and solubilized glycoproteins. J Virol 75:844–849 [View Article][PubMed]
    [Google Scholar]
  30. Krempl C., Schultze B., Laude H., Herrler G. 1997; Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287[PubMed]
    [Google Scholar]
  31. Lau Y.-L. 2004; SARS: future research and vaccine. Paediatr Respir Rev 5:300–303 [View Article][PubMed]
    [Google Scholar]
  32. Laude H., Godet M., Bernard S., Gelfi J., Duarte M., Delmas B. 1995; Functional domains in the spike protein of transmissible gastroenteritis virus. Adv Exp Med Biol 380:299–304[PubMed]
    [Google Scholar]
  33. Lea S. M., Powell R. M., McKee T., Evans D. J., Brown D., Stuart D. I., van der Merwe P. A. 1998; Determination of the affinity and kinetic constants for the interaction between the human virus echovirus 11 and its cellular receptor, CD55. J Biol Chem 273:30443–30447 [View Article][PubMed]
    [Google Scholar]
  34. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. et al. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [View Article][PubMed]
    [Google Scholar]
  35. Li F., Li W., Farzan M., Harrison S. C. 2005; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868 [View Article][PubMed]
    [Google Scholar]
  36. Masters P. S. 2006; The molecular biology of coronaviruses. Adv Virus Res 66:193–292 [View Article][PubMed]
    [Google Scholar]
  37. Miura T. A., Travanty E. A., Oko L., Bielefeldt-Ohmann H., Weiss S. R., Beauchemin N., Holmes K. V. 2008; The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a −/− mice. J Virol 82:755–763 [View Article][PubMed]
    [Google Scholar]
  38. Mizushima S., Nagata S. 1990; pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322 [View Article][PubMed]
    [Google Scholar]
  39. Myszka D. G., Sweet R. W., Hensley P., Brigham-Burke M., Kwong P. D., Hendrickson W. A., Wyatt R., Sodroski J., Doyle M. L. 2000; Energetics of the HIV gp120–CD4 binding reaction. Proc Natl Acad Sci U S A 97:9026–9031 [View Article][PubMed]
    [Google Scholar]
  40. Nam H. J., Song M.-Y., Choi D.-H., Yang S.-H., Jin H.-T., Sung Y.-C. 2010; Marked enhancement of antigen-specific T-cell responses by IL-7-fused nonlytic, but not lytic, Fc as a genetic adjuvant. Eur J Immunol 40:351–358 [View Article][PubMed]
    [Google Scholar]
  41. Ordoño D., Enjuanes L., Casasnovas J. M. 2006; Methods for preparation of low abundance glycoproteins from mammalian cell supernatants. Int J Biol Macromol 39:151–156 [View Article][PubMed]
    [Google Scholar]
  42. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. 1993; Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396 [View Article][PubMed]
    [Google Scholar]
  43. Perlman S. 1998; Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. Adv Exp Med Biol 440:503–513[PubMed]
    [Google Scholar]
  44. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Peñaranda S., Bankamp B., Maher K. et al. 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [View Article][PubMed]
    [Google Scholar]
  45. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñé C., Bullido M., Gebauer F., Smerdou C., Callebaut P. et al. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417 [View Article][PubMed]
    [Google Scholar]
  46. Sánchez C. M., Gebauer F., Suñé C., Mendez A., Dopazo J., Enjuanes L. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105 [View Article][PubMed]
    [Google Scholar]
  47. Santiago C., Björling E., Stehle T., Casasnovas J. M. 2002; Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 277:32294–32301 [View Article][PubMed]
    [Google Scholar]
  48. Sibéril S., Dutertre C.-A., Fridman W.-H., Teillaud J.-L. 2007; FcγR: the key to optimize therapeutic antibodies?. Crit Rev Oncol Hematol 62:26–33 [View Article][PubMed]
    [Google Scholar]
  49. Stanley P. 1989; Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9:377–383[PubMed]
    [Google Scholar]
  50. Suñé C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. 1990; Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569 [View Article][PubMed]
    [Google Scholar]
  51. Supekar V. M., Bruckmann C., Ingallinella P., Bianchi E., Pessi A., Carfí A. 2004; Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. Proc Natl Acad Sci U S A 101:17958–17963 [View Article][PubMed]
    [Google Scholar]
  52. Tresnan D. B., Levis R., Holmes K. V. 1996; Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70:8669–8674[PubMed]
    [Google Scholar]
  53. Tsai J. C., Zelus B. D., Holmes K. V., Weiss S. R. 2003; The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. J Virol 77:841–850 [View Article][PubMed]
    [Google Scholar]
  54. van den Brink E. N., Ter Meulen J., Cox F., Jongeneelen M. A., Thijsse A., Throsby M., Marissen W. E., Rood P. M., Bakker A. B. et al. 2005; Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol 79:1635–1644 [View Article][PubMed]
    [Google Scholar]
  55. Weiss S. R., Navas-Martin S. 2005; Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69:635–664 [View Article][PubMed]
    [Google Scholar]
  56. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2004; A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201 [View Article][PubMed]
    [Google Scholar]
  57. Wu K., Li W., Peng G., Li F. 2009; Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc Natl Acad Sci U S A 106:19970–19974[PubMed] [CrossRef]
    [Google Scholar]
  58. Xing L., Tjarnlund K., Lindqvist B., Kaplan G. G., Feigelstock D., Cheng R. H., Casasnovas J. M. 2000; Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J 19:1207–1216 [View Article][PubMed]
    [Google Scholar]
  59. Xu Y., Liu Y., Lou Z., Qin L., Li X., Bai Z., Pang H., Tien P., Gao G. F., Rao Z. 2004; Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem 279:30514–30522 [View Article][PubMed]
    [Google Scholar]
  60. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422 [View Article][PubMed]
    [Google Scholar]
  61. Yokomori K., Lai M. M. 1992; Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol 66:6194–6199[PubMed]
    [Google Scholar]
  62. Zhang H., Wang G., Li J., Nie Y., Shi X., Lian G., Wang W., Yin X., Zhao Y. et al. 2004; Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78:6938–6945 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027607-0
Loading
/content/journal/jgv/10.1099/vir.0.027607-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error