1887

Abstract

Hantaviruses infect human cells through cell attachment and subsequent fusion of viral and cellular membranes at low pH. This largely unknown entry process is mediated by the Gn and Gc glycoproteins, anchored at the viral envelope membrane. Performing bioinformatic analysis and peptide-liposome-binding assays we suggested in a former report that Gc of Andes virus (ANDV) and other hantaviruses corresponds to the viral fusion protein sharing characteristics with class II fusion proteins. To gain insights into the fusion protein of hantaviruses, residues within the previously predicted fusion peptide of ANDV Gc were substituted and mutant proteins tested in fusion and infection assays. To ensure proper folding of mutant proteins, they were first characterized for trafficking to the plasma membrane and incorporation on to ANDV Gn/Gc-pseudotyped lentiviral particles. Cell attachment of these particles was assessed using a newly developed binding assay and their subsequent entry properties determined by FACS analysis of transduced cells expressing the GFP reporter gene. Furthermore, a three-colour-based cell–cell fusion assay of ANDV Gn/Gc expressing cells was performed. The results indicate an essential role of conserved Gc residues W115 and N118 in membrane fusion. Conversely, substitutions of the non-conserved Gc residue G116 did not considerably affect fusion and infection. Altogether, the findings are fully consistent with our earlier prediction suggesting Gc residues 115–121 as an internal fusion peptide and further emphasize the importance of aromatic and polar residues in hantavirus–cell membrane fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027235-0
2011-03-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/3/552.html?itemId=/content/journal/jgv/10.1099/vir.0.027235-0&mimeType=html&fmt=ahah

References

  1. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. ( 2001; ). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75, 4268–4275.[CrossRef]
    [Google Scholar]
  2. Arikawa, J., Takashima, I. & Hashimoto, N. ( 1985; ). Cell fusion by haemorrhagic fever with renal syndrome (HFRS) viruses and its application for titration of virus infectivity and neutralizing antibody. Arch Virol 86, 303–313.[CrossRef]
    [Google Scholar]
  3. Booth, T. F., Gould, E. A. & Nuttall, P. A. ( 1991; ). Structure and morphogenesis of Dugbe virus (Bunyaviridae, Nairovirus) studied by immunogold electron microscopy of ultrathin cryosections. Virus Res 21, 199–212.[CrossRef]
    [Google Scholar]
  4. Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X. & Rey, F. A. ( 2004; ). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.[CrossRef]
    [Google Scholar]
  5. Choi, Y., Kwon, Y. C., Kim, S. I., Park, J. M., Lee, K. H. & Ahn, B. Y. ( 2008; ). A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 381, 178–183.[CrossRef]
    [Google Scholar]
  6. Cifuentes-Muñoz, N., Darlix, J. L. & Tischler, N. D. ( 2010; ). Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 153, 29–35.[CrossRef]
    [Google Scholar]
  7. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. ( 2004; ). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.[CrossRef]
    [Google Scholar]
  8. Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. ( 2005; ). The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 285, 25–66.
    [Google Scholar]
  9. Elliott, R. M. ( 1990; ). Molecular biology of the Bunyaviridae. J Gen Virol 71, 501–522.[CrossRef]
    [Google Scholar]
  10. Elliott, R. M. (editor) ( 1996; ). The Bunyaviridae. New York. : Plenum Press.
    [Google Scholar]
  11. Epand, R. M. ( 2003; ). Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 1614, 116–121.[CrossRef]
    [Google Scholar]
  12. Esbjorner, E. K., Caesar, C. E., Albinsson, B., Lincoln, P. & Norden, B. ( 2007; ). Tryptophan orientation in model lipid membranes. Biochem Biophys Res Commun 361, 645–650.[CrossRef]
    [Google Scholar]
  13. Garry, C. E. & Garry, R. F. ( 2004; ). Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model 1, 10.[CrossRef]
    [Google Scholar]
  14. Gavrilovskaya, I. N., Shepley, M., Shaw, R., Ginsberg, M. H. & Mackow, E. R. ( 1998; ). beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95, 7074–7079.[CrossRef]
    [Google Scholar]
  15. Gibbons, D. L., Vaney, M. C., Roussel, A., Vigouroux, A., Reilly, B., Lepault, J., Kielian, M. & Rey, F. A. ( 2004; ). Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325.[CrossRef]
    [Google Scholar]
  16. Godoy, P., Marsac, D., Stefas, E., Ferrer, P., Tischler, N. D., Pino, K., Ramdohr, P., Vial, P., Valenzuela, P. D. & other authors ( 2009; ). Andes virus antigens are shed in urine of patients with acute hantavirus cardiopulmonary syndrome. J Virol 83, 5046–5055.[CrossRef]
    [Google Scholar]
  17. Goldsmith, C. S., Elliott, L. H., Peters, C. J. & Zaki, S. R. ( 1995; ). Ultrastructural characteristics of Sin Nombre virus, causative agent of hantavirus pulmonary syndrome. Arch Virol 140, 2107–2122.[CrossRef]
    [Google Scholar]
  18. Graham, F. L. & van der Eb, A. J. ( 1973; ). Transformation of rat cells by DNA of human adenovirus 5. Virology 54, 536–539.[CrossRef]
    [Google Scholar]
  19. Hacker, J. K. & Hardy, J. L. ( 1997; ). Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 235, 40–47.[CrossRef]
    [Google Scholar]
  20. Han, X., Bushweller, J. H., Cafiso, D. S. & Tamm, L. K. ( 2001; ). Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8, 715–720.[CrossRef]
    [Google Scholar]
  21. Hannah, B. P., Heldwein, E. E., Bender, F. C., Cohen, G. H. & Eisenberg, R. J. ( 2007; ). Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J Virol 81, 4858–4865.[CrossRef]
    [Google Scholar]
  22. Harrison, S. C. ( 2008; ). Viral membrane fusion. Nat Struct Mol Biol 15, 690–698.[CrossRef]
    [Google Scholar]
  23. Harter, C., James, P., Bachi, T., Semenza, G. & Brunner, J. ( 1989; ). Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ‘fusion peptide’. J Biol Chem 264, 6459–6464.
    [Google Scholar]
  24. Hernandez, L. D. & White, J. M. ( 1998; ). Mutational analysis of the candidate internal fusion peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein. J Virol 72, 3259–3267.
    [Google Scholar]
  25. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. M. ( 1996; ). Virus–cell and cell–cell fusion. Annu Rev Cell Dev Biol 12, 627–661.[CrossRef]
    [Google Scholar]
  26. Horvath, C. M. & Lamb, R. A. ( 1992; ). Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion. J Virol 66, 2443–2455.
    [Google Scholar]
  27. Ito, H., Watanabe, S., Sanchez, A., Whitt, M. A. & Kawaoka, Y. ( 1999; ). Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 73, 8907–8912.
    [Google Scholar]
  28. Jin, M., Park, J., Lee, S., Park, B., Shin, J., Song, K. J., Ahn, T. I., Hwang, S. Y., Ahn, B. Y. & Ahn, K. ( 2002; ). Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294, 60–69.[CrossRef]
    [Google Scholar]
  29. Kadlec, J., Loureiro, S., Abrescia, N. G., Stuart, D. I. & Jones, I. M. ( 2008; ). The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol 15, 1024–1030.[CrossRef]
    [Google Scholar]
  30. Kielian, M. & Rey, F. A. ( 2006; ). Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4, 67–76.[CrossRef]
    [Google Scholar]
  31. Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R. & Shai, Y. ( 1997; ). Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell–cell fusion. Structure–function study. J Biol Chem 272, 13496–13505.[CrossRef]
    [Google Scholar]
  32. Krautkramer, E. & Zeier, M. ( 2008; ). Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J Virol 82, 4257–4264.[CrossRef]
    [Google Scholar]
  33. Kuismanen, E. ( 1984; ). Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J Virol 51, 806–812.
    [Google Scholar]
  34. Kuismanen, E., Hedman, K., Saraste, J. & Pettersson, R. F. ( 1982; ). Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex. Mol Cell Biol 2, 1444–1458.
    [Google Scholar]
  35. Lear, J. D. & DeGrado, W. F. ( 1987; ). Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J Biol Chem 262, 6500–6505.
    [Google Scholar]
  36. Lescar, J., Roussel, A., Wien, M. W., Navaza, J., Fuller, S. D., Wengler, G. & Rey, F. A. ( 2001; ). The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148.[CrossRef]
    [Google Scholar]
  37. Levy-Mintz, P. & Kielian, M. ( 1991; ). Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J Virol 65, 4292–4300.
    [Google Scholar]
  38. Lober, C., Anheier, B., Lindow, S., Klenk, H. D. & Feldmann, H. ( 2001; ). The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology 289, 224–229.[CrossRef]
    [Google Scholar]
  39. Lozach, P. Y., Mancini, R., Bitto, D., Meier, R., Oestereich, L., Overby, A. K., Pettersson, R. F. & Helenius, A. ( 2010; ). Entry of bunyaviruses into mammalian cells. Cell Host Microbe 7, 488–499.[CrossRef]
    [Google Scholar]
  40. MacCallum, J. L., Bennett, W. F. & Tieleman, D. P. ( 2007; ). Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129, 371–377.[CrossRef]
    [Google Scholar]
  41. Mangeot, P. E., Negre, D., Dubois, B., Winter, A. J., Leissner, P., Mehtali, M., Kaiserlian, D., Cosset, F. L. & Darlix, J. L. ( 2000; ). Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 74, 8307–8315.[CrossRef]
    [Google Scholar]
  42. Mangeot, P. E., Duperrier, K., Negre, D., Boson, B., Rigal, D., Cosset, F. L. & Darlix, J. L. ( 2002; ). High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 5, 283–290.[CrossRef]
    [Google Scholar]
  43. Martin, I., Dubois, M. C., Saermark, T., Epand, R. M. & Ruysschaert, J. M. ( 1993; ). Lysophosphatidylcholine mediates the mode of insertion of the NH2-terminal SIV fusion peptide into the lipid bilayer. FEBS Lett 333, 325–330.[CrossRef]
    [Google Scholar]
  44. Melo, M. N., Sousa, F. J., Carneiro, F. A., Castanho, M. A., Valente, A. P., Almeida, F. C., Da Poian, A. T. & Mohana-Borges, R. ( 2009; ). Interaction of the dengue virus fusion peptide with membranes assessed by NMR: the essential role of the envelope protein Trp101 for membrane fusion. J Mol Biol 392, 736–746.[CrossRef]
    [Google Scholar]
  45. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  46. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  47. Nieva, J. L. & Agirre, A. ( 2003; ). Are fusion peptides a good model to study viral cell fusion? Biochim Biophys Acta 1614, 104–115.[CrossRef]
    [Google Scholar]
  48. Norman, K. E. & Nymeyer, H. ( 2006; ). Indole localization in lipid membranes revealed by molecular simulation. Biophys J 91, 2046–2054.[CrossRef]
    [Google Scholar]
  49. Ogino, M., Yoshimatsu, K., Ebihara, H., Araki, K., Lee, B. H., Okumura, M. & Arikawa, J. ( 2004; ). Cell fusion activities of Hantaan virus envelope glycoproteins. J Virol 78, 10776–10782.[CrossRef]
    [Google Scholar]
  50. Pekosz, A. & Gonzalez-Scarano, F. ( 1996; ). The extracellular domain of La Crosse virus G1 forms oligomers and undergoes pH-dependent conformational changes. Virology 225, 243–247.[CrossRef]
    [Google Scholar]
  51. Pekosz, A., Griot, C., Nathanson, N. & Gonzalez-Scarano, F. ( 1995; ). Tropism of bunyaviruses: evidence for a G1 glycoprotein-mediated entry pathway common to the California serogroup. Virology 214, 339–348.[CrossRef]
    [Google Scholar]
  52. Pettersson, R. & Melin, L. ( 1996; ). Synthesis, assembly and intracellular transport of Bunyaviridae membrane proteins. In The Bunyaviridae, pp. 159–188. Edited by Elliott, R. M.. New York. : Plenum Press.
    [Google Scholar]
  53. Plassmeyer, M. L., Soldan, S. S., Stachelek, K. M., Roth, S. M., Martin-Garcia, J. & Gonzalez-Scarano, F. ( 2007; ). Mutagenesis of the La Crosse virus glycoprotein supports a role for Gc (1066–1087) as the fusion peptide. Virology 358, 273–282.[CrossRef]
    [Google Scholar]
  54. Ray, N., Whidby, J., Stewart, S., Hooper, J. W. & Bertolotti-Ciarlet, A. ( 2010; ). Study of Andes virus entry and neutralization using a pseudovirion system. J Virol Methods 163, 416–423.[CrossRef]
    [Google Scholar]
  55. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  56. Rwambo, P. M., Shaw, M. K., Rurangirwa, F. R. & DeMartini, J. C. ( 1996; ). Ultrastructural studies on the replication and morphogenesis of Nairobi sheep disease virus, a Nairovirus. Arch Virol 141, 1479–1492.[CrossRef]
    [Google Scholar]
  57. Salanueva, I. J., Novoa, R. R., Cabezas, P., Lopez-Iglesias, C., Carrascosa, J. L., Elliott, R. M. & Risco, C. ( 2003; ). Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. J Virol 77, 1368–1381.[CrossRef]
    [Google Scholar]
  58. Sanchez, A. J., Vincent, M. J. & Nichol, S. T. ( 2002; ). Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76, 7263–7275.[CrossRef]
    [Google Scholar]
  59. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  60. Shi, X., Goli, J., Clark, G., Brauburger, K. & Elliott, R. M. ( 2009; ). Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein. J Gen Virol 90, 2483–2492.[CrossRef]
    [Google Scholar]
  61. Smith, A. E. & Helenius, A. ( 2004; ). How viruses enter animal cells. Science 304, 237–242.[CrossRef]
    [Google Scholar]
  62. Smith, J. F. & Pifat, D. Y. ( 1982; ). Morphogenesis of sandfly viruses (Bunyaviridae family). Virology 121, 61–81.[CrossRef]
    [Google Scholar]
  63. Soldan, S. S., Hollidge, B. S., Wagner, V., Weber, F. & González-Scarano, F. ( 2010; ). La Crosse virus (LACV) Gc fusion peptide mutants have impaired growth and fusion phenotypes, but remain neurotoxic. Virology 404, 139–147.[CrossRef]
    [Google Scholar]
  64. Soneoka, Y., Cannon, P. M., Ramsdale, E. E., Griffiths, J. C., Romano, G., Kingsman, S. M. & Kingsman, A. J. ( 1995; ). A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23, 628–633.[CrossRef]
    [Google Scholar]
  65. Stegmann, T., Delfino, J. M., Richards, F. M. & Helenius, A. ( 1991; ). The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J Biol Chem 266, 18404–18410.
    [Google Scholar]
  66. Sun, H., Greathouse, D. V., Andersen, O. S. & Koeppe, R. E., II ( 2008a; ). The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem 283, 22233–22243.[CrossRef]
    [Google Scholar]
  67. Sun, X., Belouzard, S. & Whittaker, G. R. ( 2008b; ). Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J Biol Chem 283, 6418–6427.[CrossRef]
    [Google Scholar]
  68. Tamm, L. K. & Han, X. ( 2000; ). Viral fusion peptides: a tool set to disrupt and connect biological membranes. Biosci Rep 20, 501–518.[CrossRef]
    [Google Scholar]
  69. Tischler, N. D., Fernandez, J., Muller, I., Martinez, R., Galeno, H., Villagra, E., Mora, J., Ramirez, E., Rosemblatt, M. & Valenzuela, P. D. ( 2003; ). Complete sequence of the genome of the human isolate of Andes virus CHI-7913: comparative sequence and protein structure analysis. Biol Res 36, 201–210.
    [Google Scholar]
  70. Tischler, N. D., Gonzalez, A., Perez-Acle, T., Rosemblatt, M. & Valenzuela, P. D. ( 2005; ). Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 86, 2937–2947.[CrossRef]
    [Google Scholar]
  71. Vaccaro, L., Cross, K. J., Kleinjung, J., Straus, S. K., Thomas, D. J., Wharton, S. A., Skehel, J. J. & Fraternali, F. ( 2005; ). Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. Biophys J 88, 25–36.[CrossRef]
    [Google Scholar]
  72. White, J. M., Delos, S. E., Brecher, M. & Schornberg, K. ( 2008; ). Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43, 189–219.[CrossRef]
    [Google Scholar]
  73. Wimley, W. C. & White, S. H. ( 1996; ). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3, 842–848.[CrossRef]
    [Google Scholar]
  74. Yau, W. M., Wimley, W. C., Gawrisch, K. & White, S. H. ( 1998; ). The preference of tryptophan for membrane interfaces. Biochemistry 37, 14713–14718.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027235-0
Loading
/content/journal/jgv/10.1099/vir.0.027235-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 552 - 563

Cell–cell fusion activity mediated by wt Gc in dependence of the amount of transfected DNA

Determination of the low pH activation threshold of wt and mutant Gc [Single PDF file](178 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error