A West Nile virus mutant with increased resistance to acid-induced inactivation Free

Abstract

West Nile virus (WNV) is a mosquito-borne flavivirus responsible for epidemics of febrile illness, meningitis, encephalitis and flaccid paralysis. WNV gains entry into host cells through endocytosis. The acid pH inside endosomes triggers rapid conformational rearrangements of the flavivirus envelope (E) glycoprotein that result in fusion of the endosomal membrane with the virion envelope. Conformational rearrangements of the E glycoprotein can be induced by acid exposure in solution in the absence of target membranes, thus causing a loss of infectivity. Following a genetic approach to study this process, a WNV mutant with increased resistance to acid-induced inactivation was isolated and its complete genome was sequenced. A single amino acid substitution, T70I, in the E glycoprotein was found to be responsible for the increased acid resistance, which was linked to an increase in the sensitivity of infection to the chemical rise of endosomal pH, suggesting that the mutant required a more acid pH inside the endosomes for fusion. No alterations in viral infection kinetics, plaque size or induced mortality rates in mice of the mutant were noted. However, by means of virus competition assays, a reduction in viral fitness under standard culture conditions was observed for the mutant. These results provide new evidence of the adaptive flexibility to environmental factors – pH variation in this case – of WNV populations. Implications of the T70I replacement on the E glycoprotein structure–function relationship are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027185-0
2011-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/4/831.html?itemId=/content/journal/jgv/10.1099/vir.0.027185-0&mimeType=html&fmt=ahah

References

  1. Brinton, M. A.(2002). The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56, 371–402. [CrossRef] [Google Scholar]
  2. Chanel-Vos, C. & Kielian, M.(2004). A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J Virol 78, 13543–13552. [CrossRef] [Google Scholar]
  3. Chu, J. J. & Ng, M. L.(2004a). Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78, 10543–10555. [CrossRef] [Google Scholar]
  4. Chu, J. J. & Ng, M. L.(2004b). Interaction of West Nile virus with αvβ3 integrin mediates virus entry into cells. J Biol Chem 279, 54533–54541. [CrossRef] [Google Scholar]
  5. Ciota, A. T., Ngo, K. A., Lovelace, A. O., Payne, A. F., Zhou, Y., Shi, P.-Y. & Kramer, L. D.(2007). Role of the mutant spectrum in adaptation and replication of West Nile virus. J Gen Virol 88, 865–874. [CrossRef] [Google Scholar]
  6. Córdoba, L., Escribano-Romero, E., Garmendia, A. & Saiz, J. C.(2007). Pregnancy increases the risk of mortality in West Nile virus-infected mice. J Gen Virol 88, 476–480. [CrossRef] [Google Scholar]
  7. Davis, C. W., Nguyen, H.-Y., Hanna, S. L., Sánchez, M. D., Doms, R. W. & Pierson, T. C.(2006). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80, 1290–1301. [CrossRef] [Google Scholar]
  8. DeBiasi, R. L. & Tyler, K. L.(2006). West Nile virus meningoencephalitis. Nat Clin Pract Neurol 2, 264–275. [CrossRef] [Google Scholar]
  9. Diamond, M. S.(2009). Progress on the development of therapeutics against West Nile virus. Antiviral Res 83, 214–227. [CrossRef] [Google Scholar]
  10. Ebel, G. D., Carricaburu, J., Young, D., Bernard, K. A. & Kramer, L. D.(2004). Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71, 493–500. [Google Scholar]
  11. Fritz, R., Stiasny, K. & Heinz, F. X.(2008). Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183, 353–361. [CrossRef] [Google Scholar]
  12. Gollins, S. W. & Porterfield, J. S.(1986). The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol 67, 1941–1950. [CrossRef] [Google Scholar]
  13. Guirakhoo, F., Hunt, A. R., Lewis, J. G. & Roehrig, J. T.(1993). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194, 219–223. [CrossRef] [Google Scholar]
  14. Harrison, S. C.(2008). The pH sensor for flavivirus membrane fusion. J Cell Biol 183, 177–179. [CrossRef] [Google Scholar]
  15. Hayes, E. B., Komar, N., Nasci, R. S., Montgomery, S. P., O'Leary, D. R. & Campbell, G. L.(2005a). Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11, 1167–1173.[CrossRef] [Google Scholar]
  16. Hayes, E. B., Sejvar, J. J., Zaki, S. R., Lanciotti, R. S., Bode, A. V. & Campbell, G. L.(2005b). Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11, 1174–1179.[CrossRef] [Google Scholar]
  17. Jerzak, G., Bernard, K. A., Kramer, L. D. & Ebel, G. D.(2005). Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol 86, 2175–2183. [CrossRef] [Google Scholar]
  18. Kampmann, T., Mueller, D. S., Mark, A. E., Young, P. R. & Kobe, B.(2006). The role of histidine residues in low-pH-mediated viral membrane fusion. Structure 14, 1481–1487. [CrossRef] [Google Scholar]
  19. Kampmann, T., Yennamalli, R., Campbell, P., Stoermer, M. J., Fairlie, D. P., Kobe, B. & Young, P. R.(2009).In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res 84, 234–241. [CrossRef] [Google Scholar]
  20. Kanai, R., Kar, K., Anthony, K., Gould, L. H., Ledizet, M., Fikrig, E., Marasco, W. A., Koski, R. A. & Modis, Y.(2006). Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80, 11000–11008. [CrossRef] [Google Scholar]
  21. Kaufmann, B., Nybakken, G. E., Chipman, P. R., Zhang, W., Diamond, M. S., Fremont, D. H., Kuhn, R. J. & Rossmann, M. G.(2006). West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci U S A 103, 12400–12404. [CrossRef] [Google Scholar]
  22. Kaufmann, B., Chipman, P. R., Holdaway, H. A., Johnson, S., Fremont, D. H., Kuhn, R. J., Diamond, M. S. & Rossmann, M. G.(2009). Capturing a flavivirus pre-fusion intermediate. PLoS Pathog 5, e1000672. [CrossRef] [Google Scholar]
  23. Kilpatrick, A. M., Meola, M. A., Moudy, R. M. & Kramer, L. D.(2008). Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4, e1000092. [CrossRef] [Google Scholar]
  24. Kimura, T. & Ohyama, A.(1988). Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. J Gen Virol 69, 1247–1254. [CrossRef] [Google Scholar]
  25. Krishnan, M. N., Sukumaran, B., Pal, U., Agaisse, H., Murray, J. L., Hodge, T. W. & Fikrig, E.(2007). Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81, 4881–4885. [CrossRef] [Google Scholar]
  26. Lanciotti, R. S., Roehrig, J. T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K. E., Crabtree, M. B. & other authors(1999). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337. [CrossRef] [Google Scholar]
  27. Lee, E., Hall, R. A. & Lobigs, M.(2004). Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 78, 8271–8280. [CrossRef] [Google Scholar]
  28. Li, H., Robertson, A. D. & Jensen, J. H.(2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins 61, 704–721. [CrossRef] [Google Scholar]
  29. Liao, M., Sánchez-San Martín, C., Zheng, A. & Kielian, M.(2010).In vitro reconstitution reveals key intermediate states of trimer formation by the dengue virus membrane fusion protein. J Virol 84, 5730–5740. [CrossRef] [Google Scholar]
  30. Maier, C. C., Delagrave, S., Zhang, Z.-X., Brown, N., Monath, T. P., Pugachev, K. V. & Guirakhoo, F.(2007). A single M protein mutation affects the acid inactivation threshold and growth kinetics of a chimeric flavivirus. Virology 362, 468–474. [CrossRef] [Google Scholar]
  31. Martín-Acebes, M. A., Rincón, V., Armas-Portela, R., Mateu, M. G. & Sobrino, F.(2010). A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol 84, 2902–2912. [CrossRef] [Google Scholar]
  32. Mateo, R. & Mateu, M. G.(2007). Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 81, 1879–1887. [CrossRef] [Google Scholar]
  33. Medigeshi, G. R., Hirsch, A. J., Streblow, D. N., Nikolich-Zugich, J. & Nelson, J. A.(2008). West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of αvβ3 integrin. J Virol 82, 5212–5219. [CrossRef] [Google Scholar]
  34. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C.(2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319. [CrossRef] [Google Scholar]
  35. Moesker, B., Rodenhuis-Zybert, I. A., Meijerhof, T., Wilschut, J. & Smit, J. M.(2010). Characterization of the functional requirements of West Nile virus membrane fusion. J Gen Virol 91, 389–393. [CrossRef] [Google Scholar]
  36. Moudy, R. M., Meola, M. A., Morin, L.-L., Ebel, G. D. & Kramer, L. D.(2007). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77, 365–370. [Google Scholar]
  37. Mueller, D. S., Kampmann, T., Yennamalli, R., Young, P. R., Kobe, B. & Mark, A. E.(2008). Histidine protonation and the activation of viral fusion proteins. Biochem Soc Trans 36, 43–45. [CrossRef] [Google Scholar]
  38. Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J.(2003). Structure of West Nile virus. Science 302, 248. [CrossRef] [Google Scholar]
  39. Nayak, V., Dessau, M., Kucera, K., Anthony, K., Ledizet, M. & Modis, Y.(2009). Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83, 4338–4344. [CrossRef] [Google Scholar]
  40. Nelson, S., Poddar, S., Lin, T.-Y. & Pierson, T. C.(2009). Protonation of individual histidine residues is not required for the pH-dependent entry of West Nile virus: evaluation of the “histidine switch” hypothesis. J Virol 83, 12631–12635. [CrossRef] [Google Scholar]
  41. Nybakken, G. E., Nelson, C. A., Chen, B. R., Diamond, M. S. & Fremont, D. H.(2006). Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80, 11467–11474. [CrossRef] [Google Scholar]
  42. Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A. & other authors(2005). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11, 522–530. [CrossRef] [Google Scholar]
  43. Perera, R., Khaliq, M. & Kuhn, R. J.(2008). Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res 80, 11–22. [CrossRef] [Google Scholar]
  44. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E.(2004). UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612. [CrossRef] [Google Scholar]
  45. Poh, M. K., Yip, A., Zhang, S., Priestle, J. P., Ma, N. L., Smit, J. M., Wilschut, J., Shi, P.-Y., Wenk, M. R. & Schul, W.(2009). A small molecule fusion inhibitor of dengue virus. Antiviral Res 84, 260–266. [CrossRef] [Google Scholar]
  46. Sánchez-San Martín, C., Liu, C. Y. & Kielian, M.(2009). Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17, 514–521. [CrossRef] [Google Scholar]
  47. Schmidt, A. G., Yang, P. L. & Harrison, S. C.(2010). Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog 6, e1000851. [CrossRef] [Google Scholar]
  48. Smithburn, K. C., Hughes, T. P., Burke, A. W. & Paul, J. H.(1940). A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg s1-20, 471–492. [Google Scholar]
  49. Srivastava, J., Barber, D. L. & Jacobson, M. P.(2007). Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda) 22, 30–39.[CrossRef] [Google Scholar]
  50. Stiasny, K., Kössl, C., Lepault, J., Rey, F. A. & Heinz, F. X.(2007). Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog 3, e20. [CrossRef] [Google Scholar]
  51. Stiasny, K., Fritz, R., Pangerl, K. & Heinz, F. X.(2009). Molecular mechanisms of flavivirus membrane fusion. Amino Acids. [Google Scholar]
  52. Thompson, B. S., Moesker, B., Smit, J. M., Wilschut, J., Diamond, M. S. & Fremont, D. H.(2009). A therapeutic antibody against West Nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog 5, e1000453. [CrossRef] [Google Scholar]
  53. Vogt, M. R., Moesker, B., Goudsmit, J., Jongeneelen, M., Austin, S. K., Oliphant, T., Nelson, S., Pierson, T. C., Wilschut, J. & other authors(2009). Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J Virol 83, 6494–6507. [CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027185-0
Loading
/content/journal/jgv/10.1099/vir.0.027185-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed