To shed light on primate foamy virus (FV) evolution, we determined the complete nucleotide sequence of the gorilla simian foamy virus (SFVgor). Starting from a conserved region in the integrase (IN) domain of the gene we cloned the viral genome to the 5′ and 3′ LTR into plasmid vectors and elucidated its nucleotide sequence. The sequences of both LTRs were determined by nucleotide sequencing of separate PCR products from the primer-binding site or the region and LTRs. All protein motifs conserved among the primate FV were identified in SFVgor. Using phylogenetic analysis of the Gag, Pol and Env amino acid sequences, we demonstrate that SFVgor consistently clusters in accordance with a scenario of virus–host co-divergence.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bieniasz, P. D., Rethwilm, A., Pitman, R., Daniel, M. D., Chrystie, I. & McClure, M. O.(1995). A comparative study of higher primate foamy viruses, including a new virus from a gorilla. Virology 207, 217–228.[CrossRef] [Google Scholar]
  2. Calattini, S., Nerrienet, E., Mauclere, P., Georges-Courbot, M. C., Saib, A. & Gessain, A.(2004). Natural simian foamy virus infection in wild-caught gorillas, mandrills and drills from Cameroon and Gabon. J Gen Virol 85, 3313–3317.[CrossRef] [Google Scholar]
  3. Calattini, S., Betsem, E. B., Froment, A., Mauclere, P., Tortevoye, P., Schmitt, C., Njouom, R., Saib, A. & Gessain, A.(2007). Simian foamy virus transmission from apes to humans, rural Cameroon. Emerg Infect Dis 13, 1314–1320.[CrossRef] [Google Scholar]
  4. Charleston, M. A. & Robertson, D. L.(2002). Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol 51, 528–535.[CrossRef] [Google Scholar]
  5. Drummond, A. J. & Rambaut, A.(2007).beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.[CrossRef] [Google Scholar]
  6. Duda, A., Stange, A., Luftenegger, D., Stanke, N., Westphal, D., Pietschmann, T., Eastman, S. W., Linial, M. L., Rethwilm, A. & Lindemann, D.(2004). Prototype foamy virus envelope glycoprotein leader peptide processing is mediated by a furin-like cellular protease, but cleavage is not essential for viral infectivity. J Virol 78, 13865–13870.[CrossRef] [Google Scholar]
  7. Eastman, S. W. & Linial, M. L.(2001). Identification of a conserved residue of foamy virus Gag required for intracellular capsid assembly. J Virol 75, 6857–6864.[CrossRef] [Google Scholar]
  8. Epstein, M. A.(2004). Simian retroviral infections in human beings. Lancet 364, 138–139, author reply 139–140.[CrossRef] [Google Scholar]
  9. Heneine, W., Switzer, W. M., Sandstrom, P., Brown, J., Vedapuri, S., Schable, C. A., Khan, A. S., Lerche, N. W., Schweizer, M. & other authors(1998). Identification of a human population infected with simian foamy viruses. Nat Med 4, 403–407.[CrossRef] [Google Scholar]
  10. Herchenröder, O., Renne, R., Loncar, D., Cobb, E. K., Murthy, K. K., Schneider, J., Mergia, A. & Luciw, P. A.(1994). Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201, 187–199.[CrossRef] [Google Scholar]
  11. Herchenröder, O., Turek, R., Neumann-Haefelin, D., Rethwilm, A. & Schneider, J.(1995). Infectious proviral clones of chimpanzee foamy virus (SFVcpz) generated by long PCR reveal close functional relatedness to human foamy virus. Virology 214, 685–689.[CrossRef] [Google Scholar]
  12. Ho, S. Y., Phillips, M. J., Drummond, A. J. & Cooper, A.(2005). Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. Mol Biol Evol 22, 1355–1363.[CrossRef] [Google Scholar]
  13. Holzschu, D. L., Delaney, M. A., Renshaw, R. W. & Casey, J. W.(1998). The nucleotide sequence and spliced pol mRNA levels of the nonprimate spumavirus bovine foamy virus. J Virol 72, 2177–2182. [Google Scholar]
  14. Kang, Y. & Cullen, B. R.(1998). Derivation and functional characterization of a consensus DNA binding sequence for the tas transcriptional activator of simian foamy virus type 1. J Virol 72, 5502–5509. [Google Scholar]
  15. Kang, Y., Blair, W. S. & Cullen, B. R.(1998). Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter. J Virol 72, 504–511. [Google Scholar]
  16. Kupiec, J. J., Kay, A., Hayat, M., Ravier, R., Peries, J. & Galibert, F.(1991). Sequence analysis of the simian foamy virus type 1 genome. Gene 101, 185–194.[CrossRef] [Google Scholar]
  17. Leendertz, F. H., Zirkel, F., Couacy-Hymann, E., Ellerbrok, H., Morozov, V. A., Pauli, G., Hedemann, C., Formenty, P., Jensen, S. A. & other authors(2008). Interspecies transmission of simian foamy virus in a natural predator-prey system. J Virol 82, 7741–7744.[CrossRef] [Google Scholar]
  18. Liu, W., Worobey, M., Li, Y., Keele, B. F., Bibollet-Ruche, F., Guo, Y., Goepfert, P. A., Santiago, M. L., Ndjango, J. B. & other authors(2008). Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog 4, e1000097.[CrossRef] [Google Scholar]
  19. Löchelt, M., Muranyi, W. & Flügel, R. M.(1993). Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci U S A 90, 7317–7321.[CrossRef] [Google Scholar]
  20. Mannigel, I., Stange, A., Zentgraf, H. & Lindemann, D.(2007). Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome. J Virol 81, 3317–3326.[CrossRef] [Google Scholar]
  21. Murray, S. M., Picker, S. L., Axthelm, M. K., Hudkins, K., Alpers, C. E. & Linial, M. L.(2008). Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J Virol 82, 5981–5985.[CrossRef] [Google Scholar]
  22. Pacheco, B., Finzi, A., McGee-Estrada, K. & Sodroski, J.(2010). Species-specific inhibition of foamy viruses from South American monkeys by New World Monkey TRIM5α proteins. J Virol 84, 4095–4099.[CrossRef] [Google Scholar]
  23. Peters, K., Barg, N., Gartner, K. & Rethwilm, A.(2008). Complex effects of foamy virus central purine-rich regions on viral replication. Virology 373, 51–60.[CrossRef] [Google Scholar]
  24. Pfrepper, K. I., Rackwitz, H. R., Schnölzer, M., Heid, H., Löchelt, M. & Flügel, R. M.(1998). Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease. J Virol 72, 7648–7652. [Google Scholar]
  25. Prasad, A. B., Allard, M. W. & Green, E. D.(2008). Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25, 1795–1808.[CrossRef] [Google Scholar]
  26. Renne, R., Friedl, E., Schweizer, M., Fleps, U., Turek, R. & Neumann-Haefelin, D.(1992). Genomic organization and expression of simian foamy virus type 3 (SFV-3). Virology 186, 597–608.[CrossRef] [Google Scholar]
  27. Rethwilm, A., Darai, G., Rosen, A., Maurer, B. & Flügel, R. M.(1987). Molecular cloning of the genome of human spumaretrovirus. Gene 59, 19–28.[CrossRef] [Google Scholar]
  28. Switzer, W. M., Bhullar, V., Shanmugam, V., Cong, M. E., Parekh, B., Lerche, N. W., Yee, J. L., Ely, J. J., Boneva, R. & other authors(2004). Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. J Virol 78, 2780–2789.[CrossRef] [Google Scholar]
  29. Thümer, L., Rethwilm, A., Holmes, E. & Bodem, J.(2007). The complete nucleotide sequence of a New World simian foamy virus. Virology 369, 191–197.[CrossRef] [Google Scholar]
  30. Tobaly-Tapiero, J., Bittoun, P., Neves, M., Guillemin, M. C., Lecellier, C. H., Puvion-Dutilleul, F., Gicquel, B., Zientara, S., Giron, M. L. & other authors(2000). Isolation and characterization of an equine foamy virus. J Virol 74, 4064–4073.[CrossRef] [Google Scholar]
  31. Verschoor, E. J., Langenhuijzen, S., van den Engel, S., Niphuis, H., Warren, K. S. & Heeney, J. L.(2003). Structural and evolutionary analysis of an orangutan foamy virus. J Virol 77, 8584–8587.[CrossRef] [Google Scholar]
  32. Wang, G. & Mulligan, M. J.(1999). Comparative sequence analysis and predictions for the envelope glycoproteins of foamy viruses. J Gen Virol 80, 245–254. [Google Scholar]
  33. Wattel, E., Vartanian, J. P., Pannetier, C. & Wain-Hobson, S.(1995). Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol 69, 2863–2868. [Google Scholar]
  34. Winkler, I., Bodem, J., Haas, L., Zemba, M., Delius, H., Flower, R., Flügel, R. & Löchelt, M.(1997). Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J Virol 71, 6727–6741. [Google Scholar]
  35. Wolfe, N. D., Switzer, W. M., Carr, J. K., Bhullar, V. B., Shanmugam, V., Tamoufe, U., Prosser, A. T., Torimiro, J. N., Wright, A. & other authors(2004). Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 582 - 586

Overview of the length (nt) of LTR and ORF nucleotide sequences

Amino acid similarities (in per cent) of SFVgor with different FV

Nucleotide similarities (in per cent) of SFVgor with different FV

Relative divergence times for host and viral phylogenies [Single PDF file](113 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error